利用单细胞微流体和图像生物信息学定量质粒动力学

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
J.C.R. Hernandez-Beltran , J. Rodríguez-Beltrán , A. San Millán , R. Peña-Miller , A. Fuentes-Hernández
{"title":"利用单细胞微流体和图像生物信息学定量质粒动力学","authors":"J.C.R. Hernandez-Beltran ,&nbsp;J. Rodríguez-Beltrán ,&nbsp;A. San Millán ,&nbsp;R. Peña-Miller ,&nbsp;A. Fuentes-Hernández","doi":"10.1016/j.plasmid.2020.102517","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and experimentally. In recent years, technological advances in </span>fluorescence microscopy and microfluidics have allowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup, and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy plasmid dynamics, we will use an experimental model system consisting on </span><em>Escherichia coli</em> K12 carrying non-conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and <em>β</em>-lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid segregation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that emerge in response to a range of selective pressures.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102517","citationCount":"4","resultStr":"{\"title\":\"Quantifying plasmid dynamics using single-cell microfluidics and image bioinformatics\",\"authors\":\"J.C.R. Hernandez-Beltran ,&nbsp;J. Rodríguez-Beltrán ,&nbsp;A. San Millán ,&nbsp;R. Peña-Miller ,&nbsp;A. Fuentes-Hernández\",\"doi\":\"10.1016/j.plasmid.2020.102517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and experimentally. In recent years, technological advances in </span>fluorescence microscopy and microfluidics have allowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup, and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy plasmid dynamics, we will use an experimental model system consisting on </span><em>Escherichia coli</em> K12 carrying non-conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and <em>β</em>-lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid segregation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that emerge in response to a range of selective pressures.</p></div>\",\"PeriodicalId\":49689,\"journal\":{\"name\":\"Plasmid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102517\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmid\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147619X20300299\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X20300299","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4

摘要

多拷贝质粒通过加快细菌的适应速度,为基因快速扩增和进化救援提供平台,在细菌的生态和进化中发挥着重要作用。尽管质粒在细菌进化动力学中具有相关性,但评估单个细胞中随机分离和复制质粒的群体水平后果仍然是一个具有挑战性的问题,无论是在理论上还是在实验上。近年来,荧光显微镜和微流体技术的进步,使得在受控环境条件下,通过量化单个细胞的荧光强度来研究基因表达的时间变化成为可能。在本文中,我们将描述不同的微流体系统的制造,实验设置和数据分析管道,可用于研究质粒动力学,在单细胞和群体。为了说明微流体技术在研究多拷贝质粒动力学方面的优势和局限性,我们将使用一个实验模型系统,该系统由大肠杆菌K12组成,该大肠杆菌K12携带非共轭多拷贝质粒(平均每个细胞19个拷贝),编码不同的荧光标记和β-内酰胺抗性基因。首先,我们将使用基于图像的流式细胞仪来估计不同选择制度下异质群体等位基因分布的变化。然后,我们将使用母机微流控装置获得单个细胞荧光强度的时间序列,以证明质粒分离和复制动力学本质上是随机过程。最后,我们使用一个微化恒温器,及时跟踪数千个细胞,重建细菌谱系,并评估在一系列选择压力下出现的等位基因频率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying plasmid dynamics using single-cell microfluidics and image bioinformatics

Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and experimentally. In recent years, technological advances in fluorescence microscopy and microfluidics have allowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup, and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy plasmid dynamics, we will use an experimental model system consisting on Escherichia coli K12 carrying non-conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and β-lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid segregation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that emerge in response to a range of selective pressures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasmid
Plasmid 生物-遗传学
CiteScore
4.70
自引率
3.80%
发文量
21
审稿时长
53 days
期刊介绍: Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信