{"title":"多发性硬化症:血脂、淋巴细胞和维生素 D。","authors":"Colleen E Hayes, James M Ntambi","doi":"10.20900/immunometab20200019","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4<sup>+</sup> Th17 cells over protective CD4<sup>+</sup> Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D<sub>3</sub> signaling from microglia to CD4<sup>+</sup> T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate <i>DRB1*1501</i> expression were observed in MS patient CD4<sup>+</sup> T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of <i>DRB1*1501</i> and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4<sup>+</sup> T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289029/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D.\",\"authors\":\"Colleen E Hayes, James M Ntambi\",\"doi\":\"10.20900/immunometab20200019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4<sup>+</sup> Th17 cells over protective CD4<sup>+</sup> Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D<sub>3</sub> signaling from microglia to CD4<sup>+</sup> T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate <i>DRB1*1501</i> expression were observed in MS patient CD4<sup>+</sup> T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of <i>DRB1*1501</i> and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4<sup>+</sup> T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.</p>\",\"PeriodicalId\":13361,\"journal\":{\"name\":\"Immunometabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289029/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunometabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20900/immunometab20200019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunometabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/immunometab20200019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
多发性硬化症(MS)是一种中枢神经系统炎症性脱髓鞘疾病。我们回顾了多发性硬化症的两个核心特征:髓鞘不稳定、碎裂和再髓鞘化失败,以及致病性 CD4+ Th17 细胞对保护性 CD4+ Treg 细胞的支配作用。为了更好地理解髓鞘病理学,我们描述了髓鞘的生物合成、结构和功能,然后强调了神经酸生物合成中的硬脂酰-CoA去饱和酶(SCD)以及神经酸对髓鞘稳定性的贡献。我们注意到维生素 D 缺乏会降低外周的 SCD,因此建议维生素 D 缺乏也会降低少突胶质细胞中的 SCD,从而破坏神经酸的供应并导致髓鞘不稳定和碎裂。为了更好地理解被扭曲的 Th17/Treg 细胞平衡,我们总结了 Th17 细胞对多发性硬化症发病机制的贡献,然后强调了 1,25- 二羟维生素 D3 信号如何从小胶质细胞传递到 CD4+ T 细胞,从而恢复 Treg 细胞的优势。这种信号传递迅速增加了蛋氨酸循环的通量,清除了同型半胱氨酸,补充了 S-腺苷蛋氨酸,并改善了表观遗传标记。我们注意到在多发性硬化症患者的 CD4+ T 细胞中观察到了 DNA 低甲基化和不恰当的 DRB1*1501 表达,因此提出维生素 D 缺乏会阻碍 DRB1*1501 和 Th17 细胞特征基因的表观遗传下调,以及 Treg 细胞特征基因的上调,从而导致 CD4+ T 细胞区内的失调。我们解释了肥胖如何降低维生素 D 状态,以及雌激素和维生素 D 如何协同促进女性 Treg 细胞优势。最后,我们讨论了这些有关髓鞘和 Th17/Treg 细胞平衡的新知识的意义,并提倡努力解决肥胖和维生素 D 缺乏的全球流行问题,以期望减少多发性硬化症的影响。
Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4+ Th17 cells over protective CD4+ Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D3 signaling from microglia to CD4+ T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate DRB1*1501 expression were observed in MS patient CD4+ T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of DRB1*1501 and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4+ T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.