多变量分类数据分析的R包。

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2018-07-01 DOI:10.32614/rj-2018-015
Juhyun Kim, Yiwen Zhang, Joshua Day, Hua Zhou
{"title":"多变量分类数据分析的R包。","authors":"Juhyun Kim,&nbsp;Yiwen Zhang,&nbsp;Joshua Day,&nbsp;Hua Zhou","doi":"10.32614/rj-2018-015","DOIUrl":null,"url":null,"abstract":"<p><p>Data with multiple responses is ubiquitous in modern applications. However, few tools are available for regression analysis of multivariate counts. The most popular multinomial-logit model has a very restrictive mean-variance structure, limiting its applicability to many data sets. This article introduces an R package <b>MGLM</b>, short for multivariate response generalized linear models, that expands the current tools for regression analysis of polytomous data. Distribution fitting, random number generation, regression, and sparse regression are treated in a unifying framework. The algorithm, usage, and implementation details are discussed.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"10 1","pages":"73-90"},"PeriodicalIF":2.3000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286576/pdf/nihms-1562404.pdf","citationCount":"14","resultStr":"{\"title\":\"MGLM: An R Package for Multivariate Categorical Data Analysis.\",\"authors\":\"Juhyun Kim,&nbsp;Yiwen Zhang,&nbsp;Joshua Day,&nbsp;Hua Zhou\",\"doi\":\"10.32614/rj-2018-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data with multiple responses is ubiquitous in modern applications. However, few tools are available for regression analysis of multivariate counts. The most popular multinomial-logit model has a very restrictive mean-variance structure, limiting its applicability to many data sets. This article introduces an R package <b>MGLM</b>, short for multivariate response generalized linear models, that expands the current tools for regression analysis of polytomous data. Distribution fitting, random number generation, regression, and sparse regression are treated in a unifying framework. The algorithm, usage, and implementation details are discussed.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"10 1\",\"pages\":\"73-90\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286576/pdf/nihms-1562404.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2018-015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2018-015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 14

摘要

具有多重响应的数据在现代应用中无处不在。然而,很少有工具可用于多元计数的回归分析。最流行的多项式-logit模型具有非常严格的均值-方差结构,限制了它对许多数据集的适用性。本文介绍了一个R包MGLM,即多元响应广义线性模型(multivariate response generalized linear models)的缩写,它扩展了当前用于多元数据回归分析的工具。分布拟合、随机数生成、回归和稀疏回归在一个统一的框架中处理。讨论了算法、用法和实现细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MGLM: An R Package for Multivariate Categorical Data Analysis.

MGLM: An R Package for Multivariate Categorical Data Analysis.

MGLM: An R Package for Multivariate Categorical Data Analysis.

MGLM: An R Package for Multivariate Categorical Data Analysis.

Data with multiple responses is ubiquitous in modern applications. However, few tools are available for regression analysis of multivariate counts. The most popular multinomial-logit model has a very restrictive mean-variance structure, limiting its applicability to many data sets. This article introduces an R package MGLM, short for multivariate response generalized linear models, that expands the current tools for regression analysis of polytomous data. Distribution fitting, random number generation, regression, and sparse regression are treated in a unifying framework. The algorithm, usage, and implementation details are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信