Max Falkenberg, David Hickey, Louie Terrill, Alberto Ciacci, Nicholas S Peters, Kim Christensen
{"title":"从心房纤维图中识别潜在的再入电路位置。","authors":"Max Falkenberg, David Hickey, Louie Terrill, Alberto Ciacci, Nicholas S Peters, Kim Christensen","doi":"10.22489/CinC.2019.102","DOIUrl":null,"url":null,"abstract":"<p><p>Re-entrant circuits have been identified as potential drivers of atrial fibrillation (AF). In this paper, we develop a novel computational framework for finding the locations of re-entrant circuits from high resolution fibre orientation data. The technique follows a statistical approach whereby we generate continuous fibre tracts across the tissue and couple adjacent fibres stochastically if they are within a given distance of each other. By varying the connection distance, we identify which regions are most susceptible to forming re-entrant circuits if muscle fibres are uncoupled, through the action of fibrosis or otherwise. Our results highlight the sleeves of the pulmonary veins, the posterior left atrium and the left atrial appendage as the regions most susceptible to re-entrant circuit formation. This is consistent with known risk locations in clinical AF. If the model can be personalised for individual patients undergoing ablation, future versions may be able to suggest suitable ablation targets.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"2019 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279949/pdf/EMS86515.pdf","citationCount":"0","resultStr":"{\"title\":\"Identifying Potential Re-Entrant Circuit Locations From Atrial Fibre Maps.\",\"authors\":\"Max Falkenberg, David Hickey, Louie Terrill, Alberto Ciacci, Nicholas S Peters, Kim Christensen\",\"doi\":\"10.22489/CinC.2019.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Re-entrant circuits have been identified as potential drivers of atrial fibrillation (AF). In this paper, we develop a novel computational framework for finding the locations of re-entrant circuits from high resolution fibre orientation data. The technique follows a statistical approach whereby we generate continuous fibre tracts across the tissue and couple adjacent fibres stochastically if they are within a given distance of each other. By varying the connection distance, we identify which regions are most susceptible to forming re-entrant circuits if muscle fibres are uncoupled, through the action of fibrosis or otherwise. Our results highlight the sleeves of the pulmonary veins, the posterior left atrium and the left atrial appendage as the regions most susceptible to re-entrant circuit formation. This is consistent with known risk locations in clinical AF. If the model can be personalised for individual patients undergoing ablation, future versions may be able to suggest suitable ablation targets.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\"2019 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279949/pdf/EMS86515.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2019.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2019.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying Potential Re-Entrant Circuit Locations From Atrial Fibre Maps.
Re-entrant circuits have been identified as potential drivers of atrial fibrillation (AF). In this paper, we develop a novel computational framework for finding the locations of re-entrant circuits from high resolution fibre orientation data. The technique follows a statistical approach whereby we generate continuous fibre tracts across the tissue and couple adjacent fibres stochastically if they are within a given distance of each other. By varying the connection distance, we identify which regions are most susceptible to forming re-entrant circuits if muscle fibres are uncoupled, through the action of fibrosis or otherwise. Our results highlight the sleeves of the pulmonary veins, the posterior left atrium and the left atrial appendage as the regions most susceptible to re-entrant circuit formation. This is consistent with known risk locations in clinical AF. If the model can be personalised for individual patients undergoing ablation, future versions may be able to suggest suitable ablation targets.