Mahesh Lingaraju, Jan M Schuller, Sebastian Falk, Piotr Gerlach, Fabien Bonneau, Jérôme Basquin, Christian Benda, Elena Conti
{"title":"加工或衰变:核RNA外泌体的机械观点。","authors":"Mahesh Lingaraju, Jan M Schuller, Sebastian Falk, Piotr Gerlach, Fabien Bonneau, Jérôme Basquin, Christian Benda, Elena Conti","doi":"10.1101/sqb.2019.84.040295","DOIUrl":null,"url":null,"abstract":"<p><p>The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.</p>","PeriodicalId":72635,"journal":{"name":"Cold Spring Harbor symposia on quantitative biology","volume":"84 ","pages":"155-163"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1101/sqb.2019.84.040295","citationCount":"14","resultStr":"{\"title\":\"To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome.\",\"authors\":\"Mahesh Lingaraju, Jan M Schuller, Sebastian Falk, Piotr Gerlach, Fabien Bonneau, Jérôme Basquin, Christian Benda, Elena Conti\",\"doi\":\"10.1101/sqb.2019.84.040295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.</p>\",\"PeriodicalId\":72635,\"journal\":{\"name\":\"Cold Spring Harbor symposia on quantitative biology\",\"volume\":\"84 \",\"pages\":\"155-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1101/sqb.2019.84.040295\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor symposia on quantitative biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/sqb.2019.84.040295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor symposia on quantitative biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/sqb.2019.84.040295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome.
The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.