基于深度cnn和强化学习的异胚肺配准。

Jorge Onieva Onieva, Berta Marti-Fuster, María Pedrero de la Puente, Raúl San José Estépar
{"title":"基于深度cnn和强化学习的异胚肺配准。","authors":"Jorge Onieva Onieva,&nbsp;Berta Marti-Fuster,&nbsp;María Pedrero de la Puente,&nbsp;Raúl San José Estépar","doi":"10.1007/978-3-030-00946-5_28","DOIUrl":null,"url":null,"abstract":"<p><p>Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.</p>","PeriodicalId":93006,"journal":{"name":"Image analysis for moving organ, breast, and thoracic images : third International Workshop, RAMBO 2018, fourth International Workshop, BIA 2018, and first International Workshop, TIA 2018, held in conjunction with MICCAI 2018, Granada,...","volume":"11040 ","pages":"284-294"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-00946-5_28","citationCount":"10","resultStr":"{\"title\":\"Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.\",\"authors\":\"Jorge Onieva Onieva,&nbsp;Berta Marti-Fuster,&nbsp;María Pedrero de la Puente,&nbsp;Raúl San José Estépar\",\"doi\":\"10.1007/978-3-030-00946-5_28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.</p>\",\"PeriodicalId\":93006,\"journal\":{\"name\":\"Image analysis for moving organ, breast, and thoracic images : third International Workshop, RAMBO 2018, fourth International Workshop, BIA 2018, and first International Workshop, TIA 2018, held in conjunction with MICCAI 2018, Granada,...\",\"volume\":\"11040 \",\"pages\":\"284-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-00946-5_28\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image analysis for moving organ, breast, and thoracic images : third International Workshop, RAMBO 2018, fourth International Workshop, BIA 2018, and first International Workshop, TIA 2018, held in conjunction with MICCAI 2018, Granada,...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-00946-5_28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image analysis for moving organ, breast, and thoracic images : third International Workshop, RAMBO 2018, fourth International Workshop, BIA 2018, and first International Workshop, TIA 2018, held in conjunction with MICCAI 2018, Granada,...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-00946-5_28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

图像配准是医学成像领域中一个众所周知的问题。在本文中,我们着重于注册胸部吸气和呼气的计算机断层扫描(CT)从同一患者。该方法通过对正变换和逆变换的联合回归,恢复了微分同构弹性位移向量场。我们的架构是基于RegNet网络的,但我们实现了一个强化的学习策略,可以容纳一个大的训练数据集。结果表明,在相同的epoch数下,我们的方法比RegNet方法具有更低的估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.

Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.

Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.

Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.

Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信