István Fodor, Péter Urbán, György Kemenes, Joris M Koene, Zsolt Pirger
{"title":"大池塘蜗牛(Lymnaea stagnalis)神经元转录组中的衰老和疾病相关基因产物:衰老、年龄相关记忆丧失和神经退行性疾病的潜在模型。","authors":"István Fodor, Péter Urbán, György Kemenes, Joris M Koene, Zsolt Pirger","doi":"10.1007/s10158-020-00242-6","DOIUrl":null,"url":null,"abstract":"<p><p>Modelling of human aging, age-related memory loss, and neurodegenerative diseases has developed into a progressive area in invertebrate neuroscience. Gold standard molluscan neuroscience models such as the sea hare (Aplysia californica) and the great pond snail (Lymnaea stagnalis) have proven to be attractive alternatives for studying these processes. Until now, A. californica has been the workhorse due to the enormous set of publicly available transcriptome and genome data. However, with growing sequence data, L. stagnalis has started to catch up with A. californica in this respect. To contribute to this and inspire researchers to use molluscan species for modelling normal biological aging and/or neurodegenerative diseases, we sequenced the whole transcriptome of the central nervous system of L. stagnalis and screened for the evolutionary conserved homolog sequences involved in aging and neurodegenerative/other diseases. Several relevant molecules were identified, including for example gelsolin, presenilin, huntingtin, Parkinson disease protein 7/Protein deglycase DJ-1, and amyloid precursor protein, thus providing a stable genetic background for L. stagnalis in this field. Our study supports the notion that molluscan species are highly suitable for studying molecular, cellular, and circuit mechanisms of the mentioned neurophysiological and neuropathological processes.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"20 3","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-020-00242-6","citationCount":"16","resultStr":"{\"title\":\"Aging and disease-relevant gene products in the neuronal transcriptome of the great pond snail (Lymnaea stagnalis): a potential model of aging, age-related memory loss, and neurodegenerative diseases.\",\"authors\":\"István Fodor, Péter Urbán, György Kemenes, Joris M Koene, Zsolt Pirger\",\"doi\":\"10.1007/s10158-020-00242-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modelling of human aging, age-related memory loss, and neurodegenerative diseases has developed into a progressive area in invertebrate neuroscience. Gold standard molluscan neuroscience models such as the sea hare (Aplysia californica) and the great pond snail (Lymnaea stagnalis) have proven to be attractive alternatives for studying these processes. Until now, A. californica has been the workhorse due to the enormous set of publicly available transcriptome and genome data. However, with growing sequence data, L. stagnalis has started to catch up with A. californica in this respect. To contribute to this and inspire researchers to use molluscan species for modelling normal biological aging and/or neurodegenerative diseases, we sequenced the whole transcriptome of the central nervous system of L. stagnalis and screened for the evolutionary conserved homolog sequences involved in aging and neurodegenerative/other diseases. Several relevant molecules were identified, including for example gelsolin, presenilin, huntingtin, Parkinson disease protein 7/Protein deglycase DJ-1, and amyloid precursor protein, thus providing a stable genetic background for L. stagnalis in this field. Our study supports the notion that molluscan species are highly suitable for studying molecular, cellular, and circuit mechanisms of the mentioned neurophysiological and neuropathological processes.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"20 3\",\"pages\":\"9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-020-00242-6\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-020-00242-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-020-00242-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
Aging and disease-relevant gene products in the neuronal transcriptome of the great pond snail (Lymnaea stagnalis): a potential model of aging, age-related memory loss, and neurodegenerative diseases.
Modelling of human aging, age-related memory loss, and neurodegenerative diseases has developed into a progressive area in invertebrate neuroscience. Gold standard molluscan neuroscience models such as the sea hare (Aplysia californica) and the great pond snail (Lymnaea stagnalis) have proven to be attractive alternatives for studying these processes. Until now, A. californica has been the workhorse due to the enormous set of publicly available transcriptome and genome data. However, with growing sequence data, L. stagnalis has started to catch up with A. californica in this respect. To contribute to this and inspire researchers to use molluscan species for modelling normal biological aging and/or neurodegenerative diseases, we sequenced the whole transcriptome of the central nervous system of L. stagnalis and screened for the evolutionary conserved homolog sequences involved in aging and neurodegenerative/other diseases. Several relevant molecules were identified, including for example gelsolin, presenilin, huntingtin, Parkinson disease protein 7/Protein deglycase DJ-1, and amyloid precursor protein, thus providing a stable genetic background for L. stagnalis in this field. Our study supports the notion that molluscan species are highly suitable for studying molecular, cellular, and circuit mechanisms of the mentioned neurophysiological and neuropathological processes.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.