Mo Zhou, Yonatan Mintz, Yoshimi Fukuoka, Ken Goldberg, Elena Flowers, Philip Kaminsky, Alejandro Castillejo, Anil Aswani
{"title":"利用强化学习实现移动健身应用程序的个性化。","authors":"Mo Zhou, Yonatan Mintz, Yoshimi Fukuoka, Ken Goldberg, Elena Flowers, Philip Kaminsky, Alejandro Castillejo, Anil Aswani","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the vast number of mobile fitness applications (apps) and their potential advantages in promoting physical activity, many existing apps lack behavior-change features and are not able to maintain behavior change motivation. This paper describes a novel fitness app called CalFit, which implements important behavior-change features like dynamic goal setting and self-monitoring. CalFit uses a reinforcement learning algorithm to generate personalized daily step goals that are challenging but attainable. We conducted the Mobile Student Activity Reinforcement (mSTAR) study with 13 college students to evaluate the efficacy of the CalFit app. The control group (receiving goals of 10,000 steps/day) had a decrease in daily step count of 1,520 (SD ± 740) between baseline and 10-weeks, compared to an increase of 700 (SD ± 830) in the intervention group (receiving personalized step goals). The difference in daily steps between the two groups was 2,220, with a statistically significant <i>p</i> = 0.039.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":"2068 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220419/pdf/nihms966774.pdf","citationCount":"0","resultStr":"{\"title\":\"Personalizing Mobile Fitness Apps using Reinforcement Learning.\",\"authors\":\"Mo Zhou, Yonatan Mintz, Yoshimi Fukuoka, Ken Goldberg, Elena Flowers, Philip Kaminsky, Alejandro Castillejo, Anil Aswani\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the vast number of mobile fitness applications (apps) and their potential advantages in promoting physical activity, many existing apps lack behavior-change features and are not able to maintain behavior change motivation. This paper describes a novel fitness app called CalFit, which implements important behavior-change features like dynamic goal setting and self-monitoring. CalFit uses a reinforcement learning algorithm to generate personalized daily step goals that are challenging but attainable. We conducted the Mobile Student Activity Reinforcement (mSTAR) study with 13 college students to evaluate the efficacy of the CalFit app. The control group (receiving goals of 10,000 steps/day) had a decrease in daily step count of 1,520 (SD ± 740) between baseline and 10-weeks, compared to an increase of 700 (SD ± 830) in the intervention group (receiving personalized step goals). The difference in daily steps between the two groups was 2,220, with a statistically significant <i>p</i> = 0.039.</p>\",\"PeriodicalId\":72554,\"journal\":{\"name\":\"CEUR workshop proceedings\",\"volume\":\"2068 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220419/pdf/nihms966774.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEUR workshop proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalizing Mobile Fitness Apps using Reinforcement Learning.
Despite the vast number of mobile fitness applications (apps) and their potential advantages in promoting physical activity, many existing apps lack behavior-change features and are not able to maintain behavior change motivation. This paper describes a novel fitness app called CalFit, which implements important behavior-change features like dynamic goal setting and self-monitoring. CalFit uses a reinforcement learning algorithm to generate personalized daily step goals that are challenging but attainable. We conducted the Mobile Student Activity Reinforcement (mSTAR) study with 13 college students to evaluate the efficacy of the CalFit app. The control group (receiving goals of 10,000 steps/day) had a decrease in daily step count of 1,520 (SD ± 740) between baseline and 10-weeks, compared to an increase of 700 (SD ± 830) in the intervention group (receiving personalized step goals). The difference in daily steps between the two groups was 2,220, with a statistically significant p = 0.039.