Long Zhou , Min Qiu , Lei Yang , Liyu Yang , Yiqi Zhang , Shuai Mu , Hanyi Song
{"title":"MicroRNA-1-3p通过与缺氧诱导因子1 α抑制剂(HIF1AN)相互作用促进MC3T3-E1细胞成骨分化","authors":"Long Zhou , Min Qiu , Lei Yang , Liyu Yang , Yiqi Zhang , Shuai Mu , Hanyi Song","doi":"10.1016/j.mod.2020.103613","DOIUrl":null,"url":null,"abstract":"<div><p>Studies have proved that miRNAs participate in the regulation of osteoblast differentiation (OD), and abnormal expression of miRNAs is related with various states of OD. In this study, we investigated the role of miRNA-1-3p in OD using MC3T3-E1 cells. BMP2 is used to induce OD of MC3T3-E1 cells. MiRNA-1-3p mimics or miRNA-1-3p inhibitor was transfected to MC3T3-E1 cells with BMP2. The expression levels of miRNA-1-3p were determined by qRT-PCR. The expression of Runx2, OSX, OPN, and OCN was detected by Western blotting. ALP assay was performed to measure alkaline phosphatase activity. Calcium nodules were evaluated by alizarin red staining. Over-expression of hypoxia-inducible factor 1-alpha inhibitor (HIF1AN) was performed and miRNA-1-3p rescue experiments were carried out. Over-expression of miRNA-1-3p promoted osteogenic differentiations and calcifications, as demonstrated by increased ALP, calcification and osteogenic markers. Knock-down of miRNA-1-3p generated the opposite results. HIF1AN was identified to be directly targeted by miRNA-1-3p. Over-expression of HIF1AN suppressed OD and calcifications, and miRNA-1-3p reversed the effect. Our results demonstrated that miRNA-1-3p could enhance OD of MC3T3-E1 cells through interacting with HIF1AN, which might be employed as therapeutic applications for bone formation and regeneration.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"162 ","pages":"Article 103613"},"PeriodicalIF":2.6000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2020.103613","citationCount":"9","resultStr":"{\"title\":\"MicroRNA-1-3p enhances osteoblast differentiation of MC3T3-E1 cells by interacting with hypoxia-inducible factor 1 α inhibitor (HIF1AN)\",\"authors\":\"Long Zhou , Min Qiu , Lei Yang , Liyu Yang , Yiqi Zhang , Shuai Mu , Hanyi Song\",\"doi\":\"10.1016/j.mod.2020.103613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies have proved that miRNAs participate in the regulation of osteoblast differentiation (OD), and abnormal expression of miRNAs is related with various states of OD. In this study, we investigated the role of miRNA-1-3p in OD using MC3T3-E1 cells. BMP2 is used to induce OD of MC3T3-E1 cells. MiRNA-1-3p mimics or miRNA-1-3p inhibitor was transfected to MC3T3-E1 cells with BMP2. The expression levels of miRNA-1-3p were determined by qRT-PCR. The expression of Runx2, OSX, OPN, and OCN was detected by Western blotting. ALP assay was performed to measure alkaline phosphatase activity. Calcium nodules were evaluated by alizarin red staining. Over-expression of hypoxia-inducible factor 1-alpha inhibitor (HIF1AN) was performed and miRNA-1-3p rescue experiments were carried out. Over-expression of miRNA-1-3p promoted osteogenic differentiations and calcifications, as demonstrated by increased ALP, calcification and osteogenic markers. Knock-down of miRNA-1-3p generated the opposite results. HIF1AN was identified to be directly targeted by miRNA-1-3p. Over-expression of HIF1AN suppressed OD and calcifications, and miRNA-1-3p reversed the effect. Our results demonstrated that miRNA-1-3p could enhance OD of MC3T3-E1 cells through interacting with HIF1AN, which might be employed as therapeutic applications for bone formation and regeneration.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"162 \",\"pages\":\"Article 103613\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2020.103613\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477320300186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477320300186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
MicroRNA-1-3p enhances osteoblast differentiation of MC3T3-E1 cells by interacting with hypoxia-inducible factor 1 α inhibitor (HIF1AN)
Studies have proved that miRNAs participate in the regulation of osteoblast differentiation (OD), and abnormal expression of miRNAs is related with various states of OD. In this study, we investigated the role of miRNA-1-3p in OD using MC3T3-E1 cells. BMP2 is used to induce OD of MC3T3-E1 cells. MiRNA-1-3p mimics or miRNA-1-3p inhibitor was transfected to MC3T3-E1 cells with BMP2. The expression levels of miRNA-1-3p were determined by qRT-PCR. The expression of Runx2, OSX, OPN, and OCN was detected by Western blotting. ALP assay was performed to measure alkaline phosphatase activity. Calcium nodules were evaluated by alizarin red staining. Over-expression of hypoxia-inducible factor 1-alpha inhibitor (HIF1AN) was performed and miRNA-1-3p rescue experiments were carried out. Over-expression of miRNA-1-3p promoted osteogenic differentiations and calcifications, as demonstrated by increased ALP, calcification and osteogenic markers. Knock-down of miRNA-1-3p generated the opposite results. HIF1AN was identified to be directly targeted by miRNA-1-3p. Over-expression of HIF1AN suppressed OD and calcifications, and miRNA-1-3p reversed the effect. Our results demonstrated that miRNA-1-3p could enhance OD of MC3T3-E1 cells through interacting with HIF1AN, which might be employed as therapeutic applications for bone formation and regeneration.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.