管道3流形Seiberg-Witten不变量的手术公式。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2020-01-01 Epub Date: 2019-05-05 DOI:10.1007/s13163-019-00297-z
Tamás László, János Nagy, András Némethi
{"title":"管道3流形Seiberg-Witten不变量的手术公式。","authors":"Tamás László,&nbsp;János Nagy,&nbsp;András Némethi","doi":"10.1007/s13163-019-00297-z","DOIUrl":null,"url":null,"abstract":"<p><p>Assume that <math><mrow><mi>M</mi> <mo>(</mo> <mi>T</mi> <mo>)</mo></mrow> </math> is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph <math><mi>T</mi></math> . We consider the combinatorial multivariable Poincaré series associated with <math><mi>T</mi></math> and its counting functions, which encode rich topological information. Using the 'periodic constant' of the series (with reduced variables associated with an arbitrary subset <math><mi>I</mi></math> of the set of vertices) we prove surgery formulae for the normalized Seiberg-Witten invariants: the periodic constant associated with <math><mi>I</mi></math> appears as the difference of the Seiberg-Witten invariants of <math><mrow><mi>M</mi> <mo>(</mo> <mi>T</mi> <mo>)</mo></mrow> </math> and <math><mrow><mi>M</mi> <mo>(</mo> <mi>T</mi> <mo>\\</mo> <mi>I</mi> <mo>)</mo></mrow> </math> for any <math><mi>I</mi></math> .</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13163-019-00297-z","citationCount":"12","resultStr":"{\"title\":\"Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds.\",\"authors\":\"Tamás László,&nbsp;János Nagy,&nbsp;András Némethi\",\"doi\":\"10.1007/s13163-019-00297-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assume that <math><mrow><mi>M</mi> <mo>(</mo> <mi>T</mi> <mo>)</mo></mrow> </math> is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph <math><mi>T</mi></math> . We consider the combinatorial multivariable Poincaré series associated with <math><mi>T</mi></math> and its counting functions, which encode rich topological information. Using the 'periodic constant' of the series (with reduced variables associated with an arbitrary subset <math><mi>I</mi></math> of the set of vertices) we prove surgery formulae for the normalized Seiberg-Witten invariants: the periodic constant associated with <math><mi>I</mi></math> appears as the difference of the Seiberg-Witten invariants of <math><mrow><mi>M</mi> <mo>(</mo> <mi>T</mi> <mo>)</mo></mrow> </math> and <math><mrow><mi>M</mi> <mo>(</mo> <mi>T</mi> <mo>\\\\</mo> <mi>I</mi> <mo>)</mo></mrow> </math> for any <math><mi>I</mi></math> .</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13163-019-00297-z\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-019-00297-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-019-00297-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

设M (T)是与连通负定图T相关联的有理同调球垂3流形。考虑与T相关的组合多变量庞卡罗级数及其计数函数,它们包含丰富的拓扑信息。使用级数的“周期常数”(具有与顶点集合的任意子集I相关的约简变量),我们证明了归一化Seiberg-Witten不变量的运算公式:与I相关的周期常数表现为M (T)和M (T \ I)对任意I的Seiberg-Witten不变量的差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds.

Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds.

Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds.

Assume that M ( T ) is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph T . We consider the combinatorial multivariable Poincaré series associated with T and its counting functions, which encode rich topological information. Using the 'periodic constant' of the series (with reduced variables associated with an arbitrary subset I of the set of vertices) we prove surgery formulae for the normalized Seiberg-Witten invariants: the periodic constant associated with I appears as the difference of the Seiberg-Witten invariants of M ( T ) and M ( T \ I ) for any I .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信