Xu Shang, Wenting Chu, Xiakun Chu, Chuanbo Liu, Liufang Xu and Jin Wang
{"title":"柔性和静电相互作用对Chz结合-折叠耦合机制的影响。H2A.z-H2B†","authors":"Xu Shang, Wenting Chu, Xiakun Chu, Chuanbo Liu, Liufang Xu and Jin Wang","doi":"10.1039/C7MB00103G","DOIUrl":null,"url":null,"abstract":"<p >The intrinsically disordered protein (IDP) Chz.core, which is the interaction core of Chz1, shows binding preference to histone variant H2A.z. Although there are several studies on the binding process of Chz.core, the detailed coupled binding–folding processes are still elusive. In this study, we explored the coupled binding–folding mechanism and the effect of flexibility by continuously monitoring the flexibility degree of Chz.core. We applied an all-atom structure-based model (SBM), which takes advantage of providing both backbone and sidechain information about the conformational changes of Chz.core during binding. We presented a somewhat different “fly-casting” picture that the long IDP can undergo a tertiary stretching and bending with larger capture radii than ordered proteins. Our results suggest that the higher flexibility of Chz.core contributes to the shorter times for capturing events, leading to higher recognition efficiencies. In addition, compared to the ordered proteins, the high flexibility of the intrinsically disordered protein enables Chz.core to have a lower binding barrier and a faster association rate, which are favorable for the binding process to its partner H2A.z–H2B.</p>","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":" 10","pages":" 2152-2159"},"PeriodicalIF":3.7430,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C7MB00103G","citationCount":"3","resultStr":"{\"title\":\"Effects of flexibility and electrostatic interactions on the coupled binding–folding mechanisms of Chz.core and H2A.z–H2B†\",\"authors\":\"Xu Shang, Wenting Chu, Xiakun Chu, Chuanbo Liu, Liufang Xu and Jin Wang\",\"doi\":\"10.1039/C7MB00103G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The intrinsically disordered protein (IDP) Chz.core, which is the interaction core of Chz1, shows binding preference to histone variant H2A.z. Although there are several studies on the binding process of Chz.core, the detailed coupled binding–folding processes are still elusive. In this study, we explored the coupled binding–folding mechanism and the effect of flexibility by continuously monitoring the flexibility degree of Chz.core. We applied an all-atom structure-based model (SBM), which takes advantage of providing both backbone and sidechain information about the conformational changes of Chz.core during binding. We presented a somewhat different “fly-casting” picture that the long IDP can undergo a tertiary stretching and bending with larger capture radii than ordered proteins. Our results suggest that the higher flexibility of Chz.core contributes to the shorter times for capturing events, leading to higher recognition efficiencies. In addition, compared to the ordered proteins, the high flexibility of the intrinsically disordered protein enables Chz.core to have a lower binding barrier and a faster association rate, which are favorable for the binding process to its partner H2A.z–H2B.</p>\",\"PeriodicalId\":90,\"journal\":{\"name\":\"Molecular BioSystems\",\"volume\":\" 10\",\"pages\":\" 2152-2159\"},\"PeriodicalIF\":3.7430,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C7MB00103G\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular BioSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00103g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00103g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effects of flexibility and electrostatic interactions on the coupled binding–folding mechanisms of Chz.core and H2A.z–H2B†
The intrinsically disordered protein (IDP) Chz.core, which is the interaction core of Chz1, shows binding preference to histone variant H2A.z. Although there are several studies on the binding process of Chz.core, the detailed coupled binding–folding processes are still elusive. In this study, we explored the coupled binding–folding mechanism and the effect of flexibility by continuously monitoring the flexibility degree of Chz.core. We applied an all-atom structure-based model (SBM), which takes advantage of providing both backbone and sidechain information about the conformational changes of Chz.core during binding. We presented a somewhat different “fly-casting” picture that the long IDP can undergo a tertiary stretching and bending with larger capture radii than ordered proteins. Our results suggest that the higher flexibility of Chz.core contributes to the shorter times for capturing events, leading to higher recognition efficiencies. In addition, compared to the ordered proteins, the high flexibility of the intrinsically disordered protein enables Chz.core to have a lower binding barrier and a faster association rate, which are favorable for the binding process to its partner H2A.z–H2B.
期刊介绍:
Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.