{"title":"计数数据判别问题的贝叶斯方法及其在多位点短串联重复数据集上的应用。","authors":"Koji Tsukuda, Shuhei Mano, Toshimichi Yamamoto","doi":"10.1515/sagmb-2018-0044","DOIUrl":null,"url":null,"abstract":"<p><p>Short Tandem Repeats (STRs) are a type of DNA polymorphism. This study considers discriminant analysis to determine the population of test individuals using an STR database containing the lengths of STRs observed at more than one locus. The discriminant method based on the Bayes factor is discussed and an improved method is proposed. The main issues are to develop a method that is relatively robust to sample size imbalance, identify a procedure to select loci, and treat the parameter in the prior distribution. A previous study achieved a classification accuracy of 0.748 for the g-mean (geometric mean of classification accuracies for two populations) and 0.867 for the AUC (area under the receiver operating characteristic curve). We improve the maximum values for the g-mean to 0.830 and the AUC to 0.935. Computer simulations indicate that the previous method is susceptible to sample size imbalance, whereas the proposed method is more robust while achieving almost identical classification accuracy. Furthermore, the results confirm that threshold adjustment is an effective countermeasure to sample size imbalance.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"19 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0044","citationCount":"0","resultStr":"{\"title\":\"Bayesian approach to discriminant problems for count data with application to multilocus short tandem repeat dataset.\",\"authors\":\"Koji Tsukuda, Shuhei Mano, Toshimichi Yamamoto\",\"doi\":\"10.1515/sagmb-2018-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short Tandem Repeats (STRs) are a type of DNA polymorphism. This study considers discriminant analysis to determine the population of test individuals using an STR database containing the lengths of STRs observed at more than one locus. The discriminant method based on the Bayes factor is discussed and an improved method is proposed. The main issues are to develop a method that is relatively robust to sample size imbalance, identify a procedure to select loci, and treat the parameter in the prior distribution. A previous study achieved a classification accuracy of 0.748 for the g-mean (geometric mean of classification accuracies for two populations) and 0.867 for the AUC (area under the receiver operating characteristic curve). We improve the maximum values for the g-mean to 0.830 and the AUC to 0.935. Computer simulations indicate that the previous method is susceptible to sample size imbalance, whereas the proposed method is more robust while achieving almost identical classification accuracy. Furthermore, the results confirm that threshold adjustment is an effective countermeasure to sample size imbalance.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Bayesian approach to discriminant problems for count data with application to multilocus short tandem repeat dataset.
Short Tandem Repeats (STRs) are a type of DNA polymorphism. This study considers discriminant analysis to determine the population of test individuals using an STR database containing the lengths of STRs observed at more than one locus. The discriminant method based on the Bayes factor is discussed and an improved method is proposed. The main issues are to develop a method that is relatively robust to sample size imbalance, identify a procedure to select loci, and treat the parameter in the prior distribution. A previous study achieved a classification accuracy of 0.748 for the g-mean (geometric mean of classification accuracies for two populations) and 0.867 for the AUC (area under the receiver operating characteristic curve). We improve the maximum values for the g-mean to 0.830 and the AUC to 0.935. Computer simulations indicate that the previous method is susceptible to sample size imbalance, whereas the proposed method is more robust while achieving almost identical classification accuracy. Furthermore, the results confirm that threshold adjustment is an effective countermeasure to sample size imbalance.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.