有符号数字扩展中的携带分析。

Pub Date : 2017-01-01 Epub Date: 2016-06-10 DOI:10.1007/s00605-016-0917-x
Clemens Heuberger, Sara Kropf, Helmut Prodinger
{"title":"有符号数字扩展中的携带分析。","authors":"Clemens Heuberger, Sara Kropf, Helmut Prodinger","doi":"10.1007/s00605-016-0917-x","DOIUrl":null,"url":null,"abstract":"<p><p>The number of positive and negative carries in the addition of two independent random signed digit expansions of given length is analyzed asymptotically for the (<i>q</i>, <i>d</i>)-system and the symmetric signed digit expansion. The results include expectation, variance, covariance between the positive and negative carries and a central limit theorem. Dependencies between the digits require determining suitable transition probabilities to obtain equidistribution on all expansions of given length. A general procedure is described to obtain such transition probabilities for arbitrary regular languages. The number of iterations in von Neumann's parallel addition method for the symmetric signed digit expansion is also analyzed, again including expectation, variance and convergence to a double exponential limiting distribution. This analysis is carried out in a general framework for sequences of generating functions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of carries in signed digit expansions.\",\"authors\":\"Clemens Heuberger, Sara Kropf, Helmut Prodinger\",\"doi\":\"10.1007/s00605-016-0917-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The number of positive and negative carries in the addition of two independent random signed digit expansions of given length is analyzed asymptotically for the (<i>q</i>, <i>d</i>)-system and the symmetric signed digit expansion. The results include expectation, variance, covariance between the positive and negative carries and a central limit theorem. Dependencies between the digits require determining suitable transition probabilities to obtain equidistribution on all expansions of given length. A general procedure is described to obtain such transition probabilities for arbitrary regular languages. The number of iterations in von Neumann's parallel addition method for the symmetric signed digit expansion is also analyzed, again including expectation, variance and convergence to a double exponential limiting distribution. This analysis is carried out in a general framework for sequences of generating functions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-016-0917-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-016-0917-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对 (q, d) 系统和对称有符号数字展开式,对给定长度的两个独立随机有符号数字展开式相加时的正负携带数进行了渐近分析。结果包括期望、方差、正负携带数之间的协方差以及中心极限定理。数字之间的依赖性要求确定合适的过渡概率,以便在给定长度的所有展开式中获得等差数列。本文介绍了一种通用程序,用于获取任意正则表达式的过渡概率。此外,还分析了冯-诺依曼并行加法中对称带符号数字展开的迭代次数,同样包括期望、方差和向双指数极限分布的收敛。这一分析是在生成函数序列的一般框架中进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of carries in signed digit expansions.

Analysis of carries in signed digit expansions.

Analysis of carries in signed digit expansions.

分享
查看原文
Analysis of carries in signed digit expansions.

The number of positive and negative carries in the addition of two independent random signed digit expansions of given length is analyzed asymptotically for the (qd)-system and the symmetric signed digit expansion. The results include expectation, variance, covariance between the positive and negative carries and a central limit theorem. Dependencies between the digits require determining suitable transition probabilities to obtain equidistribution on all expansions of given length. A general procedure is described to obtain such transition probabilities for arbitrary regular languages. The number of iterations in von Neumann's parallel addition method for the symmetric signed digit expansion is also analyzed, again including expectation, variance and convergence to a double exponential limiting distribution. This analysis is carried out in a general framework for sequences of generating functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信