Marco Benedetti, Kathleen D Klinich, Miriam A Manary, Carol A C Flannagan
{"title":"机动车碰撞中影响儿童受伤风险的因素。","authors":"Marco Benedetti, Kathleen D Klinich, Miriam A Manary, Carol A C Flannagan","doi":"10.4271/2019-22-0008","DOIUrl":null,"url":null,"abstract":"<p><p>Current recommendations for restraining child occupants are based on biomechanical testing and data from national and international field studies primarily conducted prior to 2011. We hypothesized that analysis to identify factors associated with pediatric injury in motor-vehicle crashes using a national database of more recent police-reported crashes in the United States involving children under age 13 where type of child restraint system (CRS) is recorded would support previous recommendations. Weighted data were extracted from the National Automotive Sampling System General Estimates System (NASS-GES) for crash years 2010 to 2015. Injury outcomes were grouped as CO (possible and no injury) or KAB (killed, incapacitating injury, nonincapacitating injury). Restraint was characterized as optimal, suboptimal, or unrestrained based on current best practice recommendations. Analysis used survey methods to identify factors associated with injury. Factors with significant effect on pediatric injury risk include restraint type, child age, driver injury, driver alcohol use, seating position, and crash direction. Compared to children using optimal restraint, unrestrained children have 4.9 (13-year-old) to 5.6 (< 1-year-old) times higher odds of injury, while suboptimally restrained children have 1.1 (13-year-old) to 1.9 (< 1-year-old) times higher odds of injury. As indicated by the differences in odds ratios, effects of restraint type attenuate with age. Results support current best practice recommendations to use each stage of child restraint (rear-facing CRS, forward-facing harnessed CRS, belt-positioning booster seat, lap and shoulder belt) as long as possible before switching to the next step.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"63 ","pages":"195-211"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Factors Affecting Child Injury Risk in Motor-Vehicle Crashes.\",\"authors\":\"Marco Benedetti, Kathleen D Klinich, Miriam A Manary, Carol A C Flannagan\",\"doi\":\"10.4271/2019-22-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current recommendations for restraining child occupants are based on biomechanical testing and data from national and international field studies primarily conducted prior to 2011. We hypothesized that analysis to identify factors associated with pediatric injury in motor-vehicle crashes using a national database of more recent police-reported crashes in the United States involving children under age 13 where type of child restraint system (CRS) is recorded would support previous recommendations. Weighted data were extracted from the National Automotive Sampling System General Estimates System (NASS-GES) for crash years 2010 to 2015. Injury outcomes were grouped as CO (possible and no injury) or KAB (killed, incapacitating injury, nonincapacitating injury). Restraint was characterized as optimal, suboptimal, or unrestrained based on current best practice recommendations. Analysis used survey methods to identify factors associated with injury. Factors with significant effect on pediatric injury risk include restraint type, child age, driver injury, driver alcohol use, seating position, and crash direction. Compared to children using optimal restraint, unrestrained children have 4.9 (13-year-old) to 5.6 (< 1-year-old) times higher odds of injury, while suboptimally restrained children have 1.1 (13-year-old) to 1.9 (< 1-year-old) times higher odds of injury. As indicated by the differences in odds ratios, effects of restraint type attenuate with age. Results support current best practice recommendations to use each stage of child restraint (rear-facing CRS, forward-facing harnessed CRS, belt-positioning booster seat, lap and shoulder belt) as long as possible before switching to the next step.</p>\",\"PeriodicalId\":35289,\"journal\":{\"name\":\"Stapp car crash journal\",\"volume\":\"63 \",\"pages\":\"195-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stapp car crash journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2019-22-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stapp car crash journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2019-22-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Factors Affecting Child Injury Risk in Motor-Vehicle Crashes.
Current recommendations for restraining child occupants are based on biomechanical testing and data from national and international field studies primarily conducted prior to 2011. We hypothesized that analysis to identify factors associated with pediatric injury in motor-vehicle crashes using a national database of more recent police-reported crashes in the United States involving children under age 13 where type of child restraint system (CRS) is recorded would support previous recommendations. Weighted data were extracted from the National Automotive Sampling System General Estimates System (NASS-GES) for crash years 2010 to 2015. Injury outcomes were grouped as CO (possible and no injury) or KAB (killed, incapacitating injury, nonincapacitating injury). Restraint was characterized as optimal, suboptimal, or unrestrained based on current best practice recommendations. Analysis used survey methods to identify factors associated with injury. Factors with significant effect on pediatric injury risk include restraint type, child age, driver injury, driver alcohol use, seating position, and crash direction. Compared to children using optimal restraint, unrestrained children have 4.9 (13-year-old) to 5.6 (< 1-year-old) times higher odds of injury, while suboptimally restrained children have 1.1 (13-year-old) to 1.9 (< 1-year-old) times higher odds of injury. As indicated by the differences in odds ratios, effects of restraint type attenuate with age. Results support current best practice recommendations to use each stage of child restraint (rear-facing CRS, forward-facing harnessed CRS, belt-positioning booster seat, lap and shoulder belt) as long as possible before switching to the next step.