Dafeng Yang, Zhousheng Yang, Lei Chen, Dabin Kuang, Yang Zou, Jie Li, Xu Deng, Songyuan Luo, Jianfang Luo, Jun He, Miao Yan, Guixia He, Yang Deng, Rong Li, Qiong Yuan, Yangzhao Zhou, Pei Jiang, Shenglan Tan
{"title":"二氢杨梅素增加载脂蛋白e缺乏小鼠内皮细胞一氧化氮生成并通过microRNA-21抑制动脉粥样硬化。","authors":"Dafeng Yang, Zhousheng Yang, Lei Chen, Dabin Kuang, Yang Zou, Jie Li, Xu Deng, Songyuan Luo, Jianfang Luo, Jun He, Miao Yan, Guixia He, Yang Deng, Rong Li, Qiong Yuan, Yangzhao Zhou, Pei Jiang, Shenglan Tan","doi":"10.1111/jcmm.15278","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe<sup>-</sup><sup>/</sup><sup>-</sup> ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe<sup>-</sup><sup>/</sup><sup>-</sup> mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe<sup>-</sup><sup>/</sup><sup>-</sup> mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15278","citationCount":"28","resultStr":"{\"title\":\"Dihydromyricetin increases endothelial nitric oxide production and inhibits atherosclerosis through microRNA-21 in apolipoprotein E-deficient mice.\",\"authors\":\"Dafeng Yang, Zhousheng Yang, Lei Chen, Dabin Kuang, Yang Zou, Jie Li, Xu Deng, Songyuan Luo, Jianfang Luo, Jun He, Miao Yan, Guixia He, Yang Deng, Rong Li, Qiong Yuan, Yangzhao Zhou, Pei Jiang, Shenglan Tan\",\"doi\":\"10.1111/jcmm.15278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe<sup>-</sup><sup>/</sup><sup>-</sup> ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe<sup>-</sup><sup>/</sup><sup>-</sup> mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe<sup>-</sup><sup>/</sup><sup>-</sup> mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.</p>\",\"PeriodicalId\":15215,\"journal\":{\"name\":\"Journal of Cellular and Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/jcmm.15278\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jcmm.15278\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.15278","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Dihydromyricetin increases endothelial nitric oxide production and inhibits atherosclerosis through microRNA-21 in apolipoprotein E-deficient mice.
Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe-/- ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe-/- mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe-/- mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.
期刊介绍:
Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.