基因共开网络解读基因功能关系†

IF 3.743 Q2 Biochemistry, Genetics and Molecular Biology
Wenran Li, Meng Wang, Jinghao Sun, Yong Wang and Rui Jiang
{"title":"基因共开网络解读基因功能关系†","authors":"Wenran Li, Meng Wang, Jinghao Sun, Yong Wang and Rui Jiang","doi":"10.1039/C7MB00430C","DOIUrl":null,"url":null,"abstract":"<p >Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for <em>Psoriasis</em>, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.</p>","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":" 11","pages":" 2428-2439"},"PeriodicalIF":3.7430,"publicationDate":"2017-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C7MB00430C","citationCount":"11","resultStr":"{\"title\":\"Gene co-opening network deciphers gene functional relationships†\",\"authors\":\"Wenran Li, Meng Wang, Jinghao Sun, Yong Wang and Rui Jiang\",\"doi\":\"10.1039/C7MB00430C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for <em>Psoriasis</em>, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.</p>\",\"PeriodicalId\":90,\"journal\":{\"name\":\"Molecular BioSystems\",\"volume\":\" 11\",\"pages\":\" 2428-2439\"},\"PeriodicalIF\":3.7430,\"publicationDate\":\"2017-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C7MB00430C\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular BioSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00430c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00430c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11

摘要

基因组测序技术产生了大量的基因组和表观基因组数据,为我们从表观基因组的角度研究全球范围内的基因功能提供了很好的机会。在过去十年中,基于网络的研究,如基于PPI网络和共表达网络的研究,在捕获基因之间的功能关系方面表现良好。然而,基因的功能和基因之间相互作用的机制,以阐明其功能仍不完全清楚。在此,我们构建了一个基于基因染色质可及性的基因共开放网络。我们表明,与特定生物过程或相同疾病相关的基因倾向于聚集在共同开放网络中。这种理解使我们能够从网络中检测功能簇,并预测基因的新功能。我们进一步将该网络应用于银屑病疾病基因的优先排序,并展示了联合开放网络和GWAS数据在识别疾病基因方面的联合分析能力。综上所述,共开放网络为阐明基因关联和解释疾病机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gene co-opening network deciphers gene functional relationships†

Gene co-opening network deciphers gene functional relationships†

Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for Psoriasis, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular BioSystems
Molecular BioSystems 生物-生化与分子生物学
CiteScore
2.94
自引率
0.00%
发文量
0
审稿时长
2.6 months
期刊介绍: Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信