Wenran Li, Meng Wang, Jinghao Sun, Yong Wang and Rui Jiang
{"title":"基因共开网络解读基因功能关系†","authors":"Wenran Li, Meng Wang, Jinghao Sun, Yong Wang and Rui Jiang","doi":"10.1039/C7MB00430C","DOIUrl":null,"url":null,"abstract":"<p >Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for <em>Psoriasis</em>, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.</p>","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":" 11","pages":" 2428-2439"},"PeriodicalIF":3.7430,"publicationDate":"2017-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C7MB00430C","citationCount":"11","resultStr":"{\"title\":\"Gene co-opening network deciphers gene functional relationships†\",\"authors\":\"Wenran Li, Meng Wang, Jinghao Sun, Yong Wang and Rui Jiang\",\"doi\":\"10.1039/C7MB00430C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for <em>Psoriasis</em>, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.</p>\",\"PeriodicalId\":90,\"journal\":{\"name\":\"Molecular BioSystems\",\"volume\":\" 11\",\"pages\":\" 2428-2439\"},\"PeriodicalIF\":3.7430,\"publicationDate\":\"2017-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C7MB00430C\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular BioSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00430c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00430c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Genome sequencing technology has generated a vast amount of genomic and epigenomic data, and has provided us a great opportunity to study gene functions on a global scale from an epigenomic view. In the last decade, network-based studies, such as those based on PPI networks and co-expression networks, have shown good performance in capturing functional relationships between genes. However, the functions of a gene and the mechanism of interaction of genes with each other to elucidate their functions are still not entirely clear. Here, we construct a gene co-opening network based on chromatin accessibility of genes. We show that genes related to a specific biological process or the same disease tend to be clustered in the co-opening network. This understanding allows us to detect functional clusters from the network and to predict new functions for genes. We further apply the network to prioritize disease genes for Psoriasis, and demonstrate the power of the joint analysis of the co-opening network and GWAS data in identifying disease genes. Taken together, the co-opening network provides a new viewpoint for the elucidation of gene associations and the interpretation of disease mechanisms.
期刊介绍:
Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.