{"title":"在同时的丢番图近似中,非常规高度函数。","authors":"Lior Fishman, David Simmons","doi":"10.1007/s00605-016-0983-0","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous Diophantine approximation is concerned with the approximation of a point <math><mrow><mi>x</mi> <mo>∈</mo> <msup><mi>R</mi> <mi>d</mi></msup> </mrow> </math> by points <math><mrow><mi>r</mi> <mo>∈</mo> <msup><mi>Q</mi> <mi>d</mi></msup> </mrow> </math> , with a view towards jointly minimizing the quantities <math><mrow><mo>‖</mo> <mi>x</mi> <mo>-</mo> <mi>r</mi> <mo>‖</mo></mrow> </math> and <math><mrow><mi>H</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </math> . Here <math><mrow><mi>H</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </math> is the so-called \"standard height\" of the rational point <math><mi>r</mi></math> . In this paper the authors ask: What changes if we replace the standard height function by a different one? As it turns out, this change leads to dramatic differences from the classical theory and requires the development of new methods. We discuss three examples of nonstandard height functions, computing their exponents of irrationality as well as giving more precise results. A list of open questions is also given.</p>","PeriodicalId":54737,"journal":{"name":"Monatshefte fur Mathematik","volume":"182 3","pages":"577-618"},"PeriodicalIF":0.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-016-0983-0","citationCount":"3","resultStr":"{\"title\":\"Unconventional height functions in simultaneous Diophantine approximation.\",\"authors\":\"Lior Fishman, David Simmons\",\"doi\":\"10.1007/s00605-016-0983-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simultaneous Diophantine approximation is concerned with the approximation of a point <math><mrow><mi>x</mi> <mo>∈</mo> <msup><mi>R</mi> <mi>d</mi></msup> </mrow> </math> by points <math><mrow><mi>r</mi> <mo>∈</mo> <msup><mi>Q</mi> <mi>d</mi></msup> </mrow> </math> , with a view towards jointly minimizing the quantities <math><mrow><mo>‖</mo> <mi>x</mi> <mo>-</mo> <mi>r</mi> <mo>‖</mo></mrow> </math> and <math><mrow><mi>H</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </math> . Here <math><mrow><mi>H</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </math> is the so-called \\\"standard height\\\" of the rational point <math><mi>r</mi></math> . In this paper the authors ask: What changes if we replace the standard height function by a different one? As it turns out, this change leads to dramatic differences from the classical theory and requires the development of new methods. We discuss three examples of nonstandard height functions, computing their exponents of irrationality as well as giving more precise results. A list of open questions is also given.</p>\",\"PeriodicalId\":54737,\"journal\":{\"name\":\"Monatshefte fur Mathematik\",\"volume\":\"182 3\",\"pages\":\"577-618\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-016-0983-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte fur Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-016-0983-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte fur Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-016-0983-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Unconventional height functions in simultaneous Diophantine approximation.
Simultaneous Diophantine approximation is concerned with the approximation of a point by points , with a view towards jointly minimizing the quantities and . Here is the so-called "standard height" of the rational point . In this paper the authors ask: What changes if we replace the standard height function by a different one? As it turns out, this change leads to dramatic differences from the classical theory and requires the development of new methods. We discuss three examples of nonstandard height functions, computing their exponents of irrationality as well as giving more precise results. A list of open questions is also given.
期刊介绍:
The journal was founded in 1890 by G. v. Escherich and E. Weyr as "Monatshefte für Mathematik und Physik" and appeared with this title until 1944. Continued from 1948 on as "Monatshefte für Mathematik", its managing editors were L. Gegenbauer, F. Mertens, W. Wirtinger, H. Hahn, Ph. Furtwängler, J. Radon, K. Mayrhofer, N. Hofreiter, H. Reiter, K. Sigmund, J. Cigler.
The journal is devoted to research in mathematics in its broadest sense. Over the years, it has attracted a remarkable cast of authors, ranging from G. Peano, and A. Tauber to P. Erdös and B. L. van der Waerden. The volumes of the Monatshefte contain historical achievements in analysis (L. Bieberbach, H. Hahn, E. Helly, R. Nevanlinna, J. Radon, F. Riesz, W. Wirtinger), topology (K. Menger, K. Kuratowski, L. Vietoris, K. Reidemeister), and number theory (F. Mertens, Ph. Furtwängler, E. Hlawka, E. Landau). It also published landmark contributions by physicists such as M. Planck and W. Heisenberg and by philosophers such as R. Carnap and F. Waismann. In particular, the journal played a seminal role in analyzing the foundations of mathematics (L. E. J. Brouwer, A. Tarski and K. Gödel).
The journal publishes research papers of general interest in all areas of mathematics. Surveys of significant developments in the fields of pure and applied mathematics and mathematical physics may be occasionally included.