Sharon Wei Ling Lee, R J Seager, Felix Litvak, Fabian Spill, Je Lin Sieow, Penny Hweixian Leong, Dillip Kumar, Alrina Shin Min Tan, Siew Cheng Wong, Giulia Adriani, Muhammad Hamid Zaman, And Roger D Kamm
{"title":"集成了肿瘤微环境中巨噬细胞迁移响应物理和化学因素的三维体外模型。","authors":"Sharon Wei Ling Lee, R J Seager, Felix Litvak, Fabian Spill, Je Lin Sieow, Penny Hweixian Leong, Dillip Kumar, Alrina Shin Min Tan, Siew Cheng Wong, Giulia Adriani, Muhammad Hamid Zaman, And Roger D Kamm","doi":"10.1093/intbio/zyaa007","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and β-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 4","pages":"90-108"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa007","citationCount":"0","resultStr":"{\"title\":\"Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment.\",\"authors\":\"Sharon Wei Ling Lee, R J Seager, Felix Litvak, Fabian Spill, Je Lin Sieow, Penny Hweixian Leong, Dillip Kumar, Alrina Shin Min Tan, Siew Cheng Wong, Giulia Adriani, Muhammad Hamid Zaman, And Roger D Kamm\",\"doi\":\"10.1093/intbio/zyaa007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and β-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"12 4\",\"pages\":\"90-108\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/intbio/zyaa007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyaa007\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyaa007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment.
Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and β-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.