解析飞行时间正电子发射层析成像重建:三维案例。

4区 计算机科学 Q1 Arts and Humanities
Gengsheng L Zeng, Ya Li, Qiu Huang
{"title":"解析飞行时间正电子发射层析成像重建:三维案例。","authors":"Gengsheng L Zeng,&nbsp;Ya Li,&nbsp;Qiu Huang","doi":"10.1186/s42492-020-0042-5","DOIUrl":null,"url":null,"abstract":"<p><p>In a positron emission tomography (PET) scanner, the time-of-flight (TOF) information gives us rough event position along the line-of-response (LOR). Using the TOF information for PET image reconstruction is able to reduce image noise. The state-of-the-art TOF PET image reconstruction uses iterative algorithms. This study introduces an analytic TOF PET algorithm that focuses on three-dimensional (3D) reconstruction. The proposed algorithm is in the form of backprojection filtering, in which the backprojection is performed first by using a time-resolution profile function, and then a 3D filter is applied to the backprojected image. For the list-mode data, the backprojection is carried out in the event-by-event fashion, and the timing resolution determined weighting function is used along the projection LOR. Computer simulations are carried out to verify the feasibility of the proposed algorithm.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"3 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42492-020-0042-5","citationCount":"1","resultStr":"{\"title\":\"Analytic time-of-flight positron emission tomography reconstruction: three-dimensional case.\",\"authors\":\"Gengsheng L Zeng,&nbsp;Ya Li,&nbsp;Qiu Huang\",\"doi\":\"10.1186/s42492-020-0042-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a positron emission tomography (PET) scanner, the time-of-flight (TOF) information gives us rough event position along the line-of-response (LOR). Using the TOF information for PET image reconstruction is able to reduce image noise. The state-of-the-art TOF PET image reconstruction uses iterative algorithms. This study introduces an analytic TOF PET algorithm that focuses on three-dimensional (3D) reconstruction. The proposed algorithm is in the form of backprojection filtering, in which the backprojection is performed first by using a time-resolution profile function, and then a 3D filter is applied to the backprojected image. For the list-mode data, the backprojection is carried out in the event-by-event fashion, and the timing resolution determined weighting function is used along the projection LOR. Computer simulations are carried out to verify the feasibility of the proposed algorithm.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"3 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42492-020-0042-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-020-0042-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-020-0042-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

在正电子发射断层扫描(PET)扫描仪中,飞行时间(TOF)信息给出了沿响应线(LOR)的粗略事件位置。利用TOF信息对PET图像进行重构,可以降低图像噪声。最先进的TOF PET图像重建使用迭代算法。本文介绍了一种以三维(3D)重建为重点的解析式TOF PET算法。该算法采用反向投影滤波的形式,首先利用时间分辨率轮廓函数进行反向投影,然后对反向投影的图像进行三维滤波。对于列表模式数据,以逐个事件的方式进行反向投影,并沿投影LOR使用计时分辨率确定的加权函数。计算机仿真验证了所提算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analytic time-of-flight positron emission tomography reconstruction: three-dimensional case.

Analytic time-of-flight positron emission tomography reconstruction: three-dimensional case.

Analytic time-of-flight positron emission tomography reconstruction: three-dimensional case.

Analytic time-of-flight positron emission tomography reconstruction: three-dimensional case.

In a positron emission tomography (PET) scanner, the time-of-flight (TOF) information gives us rough event position along the line-of-response (LOR). Using the TOF information for PET image reconstruction is able to reduce image noise. The state-of-the-art TOF PET image reconstruction uses iterative algorithms. This study introduces an analytic TOF PET algorithm that focuses on three-dimensional (3D) reconstruction. The proposed algorithm is in the form of backprojection filtering, in which the backprojection is performed first by using a time-resolution profile function, and then a 3D filter is applied to the backprojected image. For the list-mode data, the backprojection is carried out in the event-by-event fashion, and the timing resolution determined weighting function is used along the projection LOR. Computer simulations are carried out to verify the feasibility of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信