具有一般非线性发病率的一类离散 SEIRS 流行病模型的全局动力学。

IF 4.1 3区 数学 Q1 Mathematics
Advances in Difference Equations Pub Date : 2016-01-01 Epub Date: 2016-05-06 DOI:10.1186/s13662-016-0846-y
Xiaolin Fan, Lei Wang, Zhidong Teng
{"title":"具有一般非线性发病率的一类离散 SEIRS 流行病模型的全局动力学。","authors":"Xiaolin Fan, Lei Wang, Zhidong Teng","doi":"10.1186/s13662-016-0846-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a class of discrete SEIRS epidemic models with general nonlinear incidence is investigated. Particularly, a discrete SEIRS epidemic model with standard incidence is also considered. The positivity and boundedness of solutions with positive initial conditions are obtained. It is shown that if the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>≤</mo> <mn>1</mn></math> , then disease-free equilibrium is globally attractive, and if <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></math> , then the disease is permanent. When the model degenerates into SEIR model, it is proved that if <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></math> , then the model has a unique endemic equilibrium, which is globally attractive. Furthermore, the numerical examples verify an important open problem that when <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></math> , the endemic equilibrium of general SEIRS models is also globally attractive.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence.\",\"authors\":\"Xiaolin Fan, Lei Wang, Zhidong Teng\",\"doi\":\"10.1186/s13662-016-0846-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a class of discrete SEIRS epidemic models with general nonlinear incidence is investigated. Particularly, a discrete SEIRS epidemic model with standard incidence is also considered. The positivity and boundedness of solutions with positive initial conditions are obtained. It is shown that if the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>≤</mo> <mn>1</mn></math> , then disease-free equilibrium is globally attractive, and if <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></math> , then the disease is permanent. When the model degenerates into SEIR model, it is proved that if <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></math> , then the model has a unique endemic equilibrium, which is globally attractive. Furthermore, the numerical examples verify an important open problem that when <math><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></math> , the endemic equilibrium of general SEIRS models is also globally attractive.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-016-0846-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-016-0846-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有一般非线性发病率的离散 SEIRS 流行病模型。特别是,还考虑了具有标准入射率的离散 SEIRS 流行模型。得到了具有正初始条件的解的实在性和有界性。结果表明,如果基本繁殖数 R 0 ≤ 1,则无疾病平衡是全局有吸引力的;如果 R 0 > 1,则疾病是永久性的。当模型退化为 SEIR 模型时,证明了如果 R 0 > 1,则模型有一个唯一的流行均衡,该均衡具有全局吸引力。此外,数值示例还验证了一个重要的未决问题,即当 R 0 > 1 时,一般 SEIRS 模型的流行均衡也具有全局吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence.

Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence.

Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence.

Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence.

In this paper, a class of discrete SEIRS epidemic models with general nonlinear incidence is investigated. Particularly, a discrete SEIRS epidemic model with standard incidence is also considered. The positivity and boundedness of solutions with positive initial conditions are obtained. It is shown that if the basic reproduction number R 0 1 , then disease-free equilibrium is globally attractive, and if R 0 > 1 , then the disease is permanent. When the model degenerates into SEIR model, it is proved that if R 0 > 1 , then the model has a unique endemic equilibrium, which is globally attractive. Furthermore, the numerical examples verify an important open problem that when R 0 > 1 , the endemic equilibrium of general SEIRS models is also globally attractive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信