半正规c -一元群的一个性质。

Alfred Geroldinger, Qinghai Zhong
{"title":"半正规c -一元群的一个性质。","authors":"Alfred Geroldinger,&nbsp;Qinghai Zhong","doi":"10.1007/s40574-019-00194-9","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group and if this holds, then the C-monoid is a Krull monoid and the reduced class semigroup coincides with the usual class group of Krull monoids. We prove that a C-monoid is seminormal if and only if its reduced class semigroup is a union of groups. Based on this characterization we establish a criterion (in terms of the class semigroup) when seminormal C-monoids are half-factorial.</p>","PeriodicalId":72440,"journal":{"name":"Bollettino della Unione matematica italiana (2008)","volume":"12 4","pages":"583-597"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40574-019-00194-9","citationCount":"5","resultStr":"{\"title\":\"A characterization of seminormal C-monoids.\",\"authors\":\"Alfred Geroldinger,&nbsp;Qinghai Zhong\",\"doi\":\"10.1007/s40574-019-00194-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well-known that a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group and if this holds, then the C-monoid is a Krull monoid and the reduced class semigroup coincides with the usual class group of Krull monoids. We prove that a C-monoid is seminormal if and only if its reduced class semigroup is a union of groups. Based on this characterization we establish a criterion (in terms of the class semigroup) when seminormal C-monoids are half-factorial.</p>\",\"PeriodicalId\":72440,\"journal\":{\"name\":\"Bollettino della Unione matematica italiana (2008)\",\"volume\":\"12 4\",\"pages\":\"583-597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40574-019-00194-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bollettino della Unione matematica italiana (2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40574-019-00194-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bollettino della Unione matematica italiana (2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40574-019-00194-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,c -单群是完全整闭的,当且仅当它的约简类半群是群,如果这个成立,则c -单群是一个Krull单群,且约简类半群与一般的Krull单群重合。证明c -一元半正规当且仅当它的约简类半群是群的并。基于这一特征,我们建立了半正规c -一元是半因子的判据(就类半群而言)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of seminormal C-monoids.

It is well-known that a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group and if this holds, then the C-monoid is a Krull monoid and the reduced class semigroup coincides with the usual class group of Krull monoids. We prove that a C-monoid is seminormal if and only if its reduced class semigroup is a union of groups. Based on this characterization we establish a criterion (in terms of the class semigroup) when seminormal C-monoids are half-factorial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信