利用具有层次编码器-解码器的注意力多模态网络进行人类对话分析

Yue Gu, Xinyu Li, Kaixiang Huang, Shiyu Fu, Kangning Yang, Shuhong Chen, Moliang Zhou, Ivan Marsic
{"title":"利用具有层次编码器-解码器的注意力多模态网络进行人类对话分析","authors":"Yue Gu, Xinyu Li, Kaixiang Huang, Shiyu Fu, Kangning Yang, Shuhong Chen, Moliang Zhou, Ivan Marsic","doi":"10.1145/3240508.3240714","DOIUrl":null,"url":null,"abstract":"<p><p>Human conversation analysis is challenging because the meaning can be expressed through words, intonation, or even body language and facial expression. We introduce a hierarchical encoder-decoder structure with attention mechanism for conversation analysis. The hierarchical encoder learns word-level features from video, audio, and text data that are then formulated into conversation-level features. The corresponding hierarchical decoder is able to predict different attributes at given time instances. To integrate multiple sensory inputs, we introduce a novel fusion strategy with modality attention. We evaluated our system on published emotion recognition, sentiment analysis, and speaker trait analysis datasets. Our system outperformed previous state-of-the-art approaches in both classification and regressions tasks on three datasets. We also outperformed previous approaches in generalization tests on two commonly used datasets. We achieved comparable performance in predicting co-existing labels using the proposed model instead of multiple individual models. In addition, the easily-visualized modality and temporal attention demonstrated that the proposed attention mechanism helps feature selection and improves model interpretability.</p>","PeriodicalId":90687,"journal":{"name":"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia","volume":"2018 ","pages":"537-545"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085889/pdf/nihms-1571718.pdf","citationCount":"0","resultStr":"{\"title\":\"Human Conversation Analysis Using Attentive Multimodal Networks with Hierarchical Encoder-Decoder.\",\"authors\":\"Yue Gu, Xinyu Li, Kaixiang Huang, Shiyu Fu, Kangning Yang, Shuhong Chen, Moliang Zhou, Ivan Marsic\",\"doi\":\"10.1145/3240508.3240714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human conversation analysis is challenging because the meaning can be expressed through words, intonation, or even body language and facial expression. We introduce a hierarchical encoder-decoder structure with attention mechanism for conversation analysis. The hierarchical encoder learns word-level features from video, audio, and text data that are then formulated into conversation-level features. The corresponding hierarchical decoder is able to predict different attributes at given time instances. To integrate multiple sensory inputs, we introduce a novel fusion strategy with modality attention. We evaluated our system on published emotion recognition, sentiment analysis, and speaker trait analysis datasets. Our system outperformed previous state-of-the-art approaches in both classification and regressions tasks on three datasets. We also outperformed previous approaches in generalization tests on two commonly used datasets. We achieved comparable performance in predicting co-existing labels using the proposed model instead of multiple individual models. In addition, the easily-visualized modality and temporal attention demonstrated that the proposed attention mechanism helps feature selection and improves model interpretability.</p>\",\"PeriodicalId\":90687,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia\",\"volume\":\"2018 \",\"pages\":\"537-545\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085889/pdf/nihms-1571718.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类对话分析具有挑战性,因为对话的含义可以通过语言、语调甚至肢体语言和面部表情来表达。我们为对话分析引入了一种具有注意力机制的分层编码器-解码器结构。分层编码器从视频、音频和文本数据中学习单词级特征,然后将这些特征转化为对话级特征。相应的分层解码器能够预测给定时间实例的不同属性。为了整合多种感官输入,我们引入了一种具有模态注意力的新型融合策略。我们在已发布的情感识别、情感分析和说话者特质分析数据集上评估了我们的系统。在三个数据集的分类和回归任务中,我们的系统都优于之前的先进方法。在两个常用数据集的泛化测试中,我们的表现也优于之前的方法。在预测共存标签时,我们使用了所提出的模型,而不是多个单独的模型,取得了不相上下的性能。此外,易于可视化的模式和时间注意力表明,所提出的注意力机制有助于特征选择并提高了模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human Conversation Analysis Using Attentive Multimodal Networks with Hierarchical Encoder-Decoder.

Human Conversation Analysis Using Attentive Multimodal Networks with Hierarchical Encoder-Decoder.

Human Conversation Analysis Using Attentive Multimodal Networks with Hierarchical Encoder-Decoder.

Human Conversation Analysis Using Attentive Multimodal Networks with Hierarchical Encoder-Decoder.

Human conversation analysis is challenging because the meaning can be expressed through words, intonation, or even body language and facial expression. We introduce a hierarchical encoder-decoder structure with attention mechanism for conversation analysis. The hierarchical encoder learns word-level features from video, audio, and text data that are then formulated into conversation-level features. The corresponding hierarchical decoder is able to predict different attributes at given time instances. To integrate multiple sensory inputs, we introduce a novel fusion strategy with modality attention. We evaluated our system on published emotion recognition, sentiment analysis, and speaker trait analysis datasets. Our system outperformed previous state-of-the-art approaches in both classification and regressions tasks on three datasets. We also outperformed previous approaches in generalization tests on two commonly used datasets. We achieved comparable performance in predicting co-existing labels using the proposed model instead of multiple individual models. In addition, the easily-visualized modality and temporal attention demonstrated that the proposed attention mechanism helps feature selection and improves model interpretability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信