金属薄膜在可见光和紫外线下与结构相关的光学特性。

H E Bennett, J L Stanford
{"title":"金属薄膜在可见光和紫外线下与结构相关的光学特性。","authors":"H E Bennett, J L Stanford","doi":"10.6028/jres.080A.064","DOIUrl":null,"url":null,"abstract":"Surface irregularities and crystalline order strongly influence both the scattered light and absorption of metallic films. These effects extend through all spectral regions but are particularly important in the visible and ultraviolet. Scattered light arises from several scattering mechanisms. Macroscopic irregularities such as dust, scratches and particulates are typically much less important than are microirregularities only a few tens of angstroms in height but covering the entire surface. For metals such as silver and aluminum, which have plasma edges in the ultraviolet, the excitation of surface plasmons resulting from these microirregularities causes additional incoherently reemitted or “scattered” light. Surface plasmon excitation also causes increased absorption in some wavelength regions. These effects are enhanced by dielectric overcoating layers, which both increase the absorption and scattering and shift the wavelength at which the peak occurs. Surface plasmon excitation is particularly important in the ultraviolet region, where the dielectric overcoating applied to prevent formation of an oxide film on aluminized mirrors, for example, can significantly change the mirror reflectance. Plasmon excitation is made possible by a momentum conserving process associated with material inhomogeneities and hence can presumably be caused by crystalline disorder in the metal surface as well as surface irregularities. If the disorder is present on a sufficiently fine scale, it also affects the band structure of the metal and hence its optical absorption. Examples of the effect of film structure on the optical properties of evaporated and sputtered metal films will be given.","PeriodicalId":17018,"journal":{"name":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","volume":"80A 4","pages":"643-658"},"PeriodicalIF":0.0000,"publicationDate":"1976-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293531/pdf/","citationCount":"26","resultStr":"{\"title\":\"Structure-Related Optical Characteristics of Thin Metallic Films in the Visible and Ultraviolet.\",\"authors\":\"H E Bennett, J L Stanford\",\"doi\":\"10.6028/jres.080A.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface irregularities and crystalline order strongly influence both the scattered light and absorption of metallic films. These effects extend through all spectral regions but are particularly important in the visible and ultraviolet. Scattered light arises from several scattering mechanisms. Macroscopic irregularities such as dust, scratches and particulates are typically much less important than are microirregularities only a few tens of angstroms in height but covering the entire surface. For metals such as silver and aluminum, which have plasma edges in the ultraviolet, the excitation of surface plasmons resulting from these microirregularities causes additional incoherently reemitted or “scattered” light. Surface plasmon excitation also causes increased absorption in some wavelength regions. These effects are enhanced by dielectric overcoating layers, which both increase the absorption and scattering and shift the wavelength at which the peak occurs. Surface plasmon excitation is particularly important in the ultraviolet region, where the dielectric overcoating applied to prevent formation of an oxide film on aluminized mirrors, for example, can significantly change the mirror reflectance. Plasmon excitation is made possible by a momentum conserving process associated with material inhomogeneities and hence can presumably be caused by crystalline disorder in the metal surface as well as surface irregularities. If the disorder is present on a sufficiently fine scale, it also affects the band structure of the metal and hence its optical absorption. Examples of the effect of film structure on the optical properties of evaporated and sputtered metal films will be given.\",\"PeriodicalId\":17018,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"volume\":\"80A 4\",\"pages\":\"643-658\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293531/pdf/\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.080A.064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"1976/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.080A.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"1976/8/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

表面的不规则性和晶体的有序性对金属薄膜的散射光和吸收都有很大的影响。这些效应遍及所有光谱区域,但在可见光和紫外线中尤为重要。散射光由几种散射机制产生。宏观上的不规则,如灰尘、划痕和颗粒,通常比只有几十埃高但覆盖整个表面的微观不规则要重要得多。对于像银和铝这样的金属,它们在紫外线中有等离子体边缘,由这些微不规则性引起的表面等离子体激元的激发会引起额外的非相干反射或“散射”光。表面等离子激元激发也引起某些波长区域吸收增加。电介质覆盖层增强了这些效应,这既增加了吸收和散射,又使峰值发生的波长发生移位。表面等离子激元激发在紫外线区域尤为重要,例如,在镀铝镜面上应用介电覆盖层以防止氧化膜的形成,可以显著改变镜面反射率。等离子激元激发是通过与材料不均匀性相关的动量守恒过程实现的,因此可以推测是由金属表面的晶体无序以及表面不规则引起的。如果这种无序存在于足够细的尺度上,它也会影响金属的能带结构,从而影响其光学吸收。本文将举例说明薄膜结构对蒸发和溅射金属薄膜光学性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Related Optical Characteristics of Thin Metallic Films in the Visible and Ultraviolet.
Surface irregularities and crystalline order strongly influence both the scattered light and absorption of metallic films. These effects extend through all spectral regions but are particularly important in the visible and ultraviolet. Scattered light arises from several scattering mechanisms. Macroscopic irregularities such as dust, scratches and particulates are typically much less important than are microirregularities only a few tens of angstroms in height but covering the entire surface. For metals such as silver and aluminum, which have plasma edges in the ultraviolet, the excitation of surface plasmons resulting from these microirregularities causes additional incoherently reemitted or “scattered” light. Surface plasmon excitation also causes increased absorption in some wavelength regions. These effects are enhanced by dielectric overcoating layers, which both increase the absorption and scattering and shift the wavelength at which the peak occurs. Surface plasmon excitation is particularly important in the ultraviolet region, where the dielectric overcoating applied to prevent formation of an oxide film on aluminized mirrors, for example, can significantly change the mirror reflectance. Plasmon excitation is made possible by a momentum conserving process associated with material inhomogeneities and hence can presumably be caused by crystalline disorder in the metal surface as well as surface irregularities. If the disorder is present on a sufficiently fine scale, it also affects the band structure of the metal and hence its optical absorption. Examples of the effect of film structure on the optical properties of evaporated and sputtered metal films will be given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信