{"title":"p值的非均匀性可以在发散维数的早期出现。","authors":"Yingying Fan, Emre Demirkaya, Jinchi Lv","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating the joint significance of covariates is of fundamental importance in a wide range of applications. To this end, p-values are frequently employed and produced by algorithms that are powered by classical large-sample asymptotic theory. It is well known that the conventional p-values in Gaussian linear model are valid even when the dimensionality is a non-vanishing fraction of the sample size, but can break down when the design matrix becomes singular in higher dimensions or when the error distribution deviates from Gaussianity. A natural question is when the conventional p-values in generalized linear models become invalid in diverging dimensions. We establish that such a breakdown can occur early in nonlinear models. Our theoretical characterizations are confirmed by simulation studies.</p>","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079742/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonuniformity of P-values Can Occur Early in Diverging Dimensions.\",\"authors\":\"Yingying Fan, Emre Demirkaya, Jinchi Lv\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating the joint significance of covariates is of fundamental importance in a wide range of applications. To this end, p-values are frequently employed and produced by algorithms that are powered by classical large-sample asymptotic theory. It is well known that the conventional p-values in Gaussian linear model are valid even when the dimensionality is a non-vanishing fraction of the sample size, but can break down when the design matrix becomes singular in higher dimensions or when the error distribution deviates from Gaussianity. A natural question is when the conventional p-values in generalized linear models become invalid in diverging dimensions. We establish that such a breakdown can occur early in nonlinear models. Our theoretical characterizations are confirmed by simulation studies.</p>\",\"PeriodicalId\":314696,\"journal\":{\"name\":\"Journal of machine learning research : JMLR\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of machine learning research : JMLR\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"94","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonuniformity of P-values Can Occur Early in Diverging Dimensions.
Evaluating the joint significance of covariates is of fundamental importance in a wide range of applications. To this end, p-values are frequently employed and produced by algorithms that are powered by classical large-sample asymptotic theory. It is well known that the conventional p-values in Gaussian linear model are valid even when the dimensionality is a non-vanishing fraction of the sample size, but can break down when the design matrix becomes singular in higher dimensions or when the error distribution deviates from Gaussianity. A natural question is when the conventional p-values in generalized linear models become invalid in diverging dimensions. We establish that such a breakdown can occur early in nonlinear models. Our theoretical characterizations are confirmed by simulation studies.