三种不同癌细胞系缺氧基因表达的建模。

Q4 Pharmacology, Toxicology and Pharmaceutics
Babak Soltanalizadeh, Erika Gonzalez Rodriguez, Vahed Maroufy, W Jim Zheng, Hulin Wu
{"title":"三种不同癌细胞系缺氧基因表达的建模。","authors":"Babak Soltanalizadeh,&nbsp;Erika Gonzalez Rodriguez,&nbsp;Vahed Maroufy,&nbsp;W Jim Zheng,&nbsp;Hulin Wu","doi":"10.1504/ijcbdd.2020.10026794","DOIUrl":null,"url":null,"abstract":"<p><p>Gene dynamic analysis is essential in identifying target genes involved pathogenesis of various diseases, including cancer. Cancer prognosis is often influenced by hypoxia. We apply a multi-step pipeline to study dynamic gene expressions in response to hypoxia in three cancer cell lines: prostate (DU145), colon (HT29), and breast (MCF7) cancers. We identified 26 distinct temporal expression patterns for prostate cell line, and 29 patterns for colon and breast cell lines. The module-based dynamic networks have been developed for all three cell lines. Our analyses improve the existing results in multiple ways. It exploits the time-dependence nature of gene expression values in identifying the dynamically significant genes; hence, more key significant genes and transcription factors have been identified. Our gene network returns significant information regarding biologically important modules of genes. Furthermore, the network has potential in learning the regulatory path between transcription factors and the downstream genes. In addition, our findings suggest that changes in genes BMP6 and ARSJ expression might have a key role in the time-dependent response to hypoxia in breast cancer.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"13 1","pages":"124-143"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061283/pdf/nihms-1023018.pdf","citationCount":"1","resultStr":"{\"title\":\"Modelling of hypoxia gene expression for three different cancer cell lines.\",\"authors\":\"Babak Soltanalizadeh,&nbsp;Erika Gonzalez Rodriguez,&nbsp;Vahed Maroufy,&nbsp;W Jim Zheng,&nbsp;Hulin Wu\",\"doi\":\"10.1504/ijcbdd.2020.10026794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene dynamic analysis is essential in identifying target genes involved pathogenesis of various diseases, including cancer. Cancer prognosis is often influenced by hypoxia. We apply a multi-step pipeline to study dynamic gene expressions in response to hypoxia in three cancer cell lines: prostate (DU145), colon (HT29), and breast (MCF7) cancers. We identified 26 distinct temporal expression patterns for prostate cell line, and 29 patterns for colon and breast cell lines. The module-based dynamic networks have been developed for all three cell lines. Our analyses improve the existing results in multiple ways. It exploits the time-dependence nature of gene expression values in identifying the dynamically significant genes; hence, more key significant genes and transcription factors have been identified. Our gene network returns significant information regarding biologically important modules of genes. Furthermore, the network has potential in learning the regulatory path between transcription factors and the downstream genes. In addition, our findings suggest that changes in genes BMP6 and ARSJ expression might have a key role in the time-dependent response to hypoxia in breast cancer.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"13 1\",\"pages\":\"124-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061283/pdf/nihms-1023018.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcbdd.2020.10026794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2020.10026794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

基因动力学分析在确定包括癌症在内的各种疾病发病机制的靶基因方面是必不可少的。肿瘤预后常受缺氧影响。我们采用多步骤管道研究三种癌细胞系(前列腺癌(DU145)、结肠癌(HT29)和乳腺癌(MCF7)对缺氧的动态基因表达反应。我们在前列腺细胞系中鉴定出26种不同的时间表达模式,在结肠和乳腺细胞系中鉴定出29种不同的时间表达模式。基于模块的动态网络已经为所有三种细胞系开发。我们的分析从多个方面改进了现有的结果。它利用基因表达值的时间依赖性来识别动态显著基因;因此,更多关键的重要基因和转录因子已被确定。我们的基因网络返回关于生物学上重要的基因模块的重要信息。此外,该网络在学习转录因子和下游基因之间的调控路径方面具有潜力。此外,我们的研究结果表明,基因BMP6和ARSJ表达的变化可能在乳腺癌对缺氧的时间依赖性反应中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling of hypoxia gene expression for three different cancer cell lines.

Gene dynamic analysis is essential in identifying target genes involved pathogenesis of various diseases, including cancer. Cancer prognosis is often influenced by hypoxia. We apply a multi-step pipeline to study dynamic gene expressions in response to hypoxia in three cancer cell lines: prostate (DU145), colon (HT29), and breast (MCF7) cancers. We identified 26 distinct temporal expression patterns for prostate cell line, and 29 patterns for colon and breast cell lines. The module-based dynamic networks have been developed for all three cell lines. Our analyses improve the existing results in multiple ways. It exploits the time-dependence nature of gene expression values in identifying the dynamically significant genes; hence, more key significant genes and transcription factors have been identified. Our gene network returns significant information regarding biologically important modules of genes. Furthermore, the network has potential in learning the regulatory path between transcription factors and the downstream genes. In addition, our findings suggest that changes in genes BMP6 and ARSJ expression might have a key role in the time-dependent response to hypoxia in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信