{"title":"基因组编辑技术的技术转移模型。","authors":"Gregory D Graff, Jacob S Sherkow","doi":"10.1146/annurev-genom-121119-100145","DOIUrl":null,"url":null,"abstract":"<p><p>Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genom-121119-100145","citationCount":"7","resultStr":"{\"title\":\"Models of Technology Transfer for Genome-Editing Technologies.\",\"authors\":\"Gregory D Graff, Jacob S Sherkow\",\"doi\":\"10.1146/annurev-genom-121119-100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.</p>\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-genom-121119-100145\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-121119-100145\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-121119-100145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Models of Technology Transfer for Genome-Editing Technologies.
Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.
期刊介绍:
Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.