基因组编辑技术的技术转移模型。

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY
Gregory D Graff, Jacob S Sherkow
{"title":"基因组编辑技术的技术转移模型。","authors":"Gregory D Graff,&nbsp;Jacob S Sherkow","doi":"10.1146/annurev-genom-121119-100145","DOIUrl":null,"url":null,"abstract":"<p><p>Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genom-121119-100145","citationCount":"7","resultStr":"{\"title\":\"Models of Technology Transfer for Genome-Editing Technologies.\",\"authors\":\"Gregory D Graff,&nbsp;Jacob S Sherkow\",\"doi\":\"10.1146/annurev-genom-121119-100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.</p>\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-genom-121119-100145\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-121119-100145\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-121119-100145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 7

摘要

基因组编辑的许多基本发明,包括巨核酶、锌指核酸酶(ZFNs)、转录激活物样效应核酸酶(TALENs)和CRISPR,最初都是在大学里发明的,并获得了专利,以鼓励商业开发。这就产生了技术转让模式的多样性,但也产生了技术转让模式之间的冲突。在更广泛的大学专利历史和政策背景下,以及研究工具面临的特殊挑战,我们回顾了基因组编辑的专利产权和用于商业化的技术转让模式的多样性,包括公共领域的保证金、开放获取合同、材料转让协议、非排他性和排他性许可、替代许可和聚合许可。在这种多样性中发现了优势,允许实验和竞争,我们将其描述为技术转让的联邦制模式。基因组编辑的一个显著特征是第三方许可中介机构的兴起和成功。与此同时,基因组编辑技术的快速发展可能会削弱专利财产和许可制度的重要性,并可能减轻过于宽泛的专利的影响,从而产生新的替代品来实现商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models of Technology Transfer for Genome-Editing Technologies.

Many of the fundamental inventions of genome editing, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR, were first made at universities and patented to encourage commercial development. This gave rise to a diversity of technology transfer models but also conflicts among them. Against a broader historical and policy backdrop of university patenting and special challenges concerning research tools, we review the patent estates of genome editing and the diversity of technology transfer models employed to commercialize them, including deposit in the public domain, open access contracts, material transfer agreements, nonexclusive and exclusive licenses, surrogate licenses, and aggregated licenses. Advantages are found in this diversity, allowing experimentation and competition that we characterize as a federalism model of technology transfer. A notable feature of genome editing has been the rise and success of third-party licensing intermediaries. At the same time, the rapid pace of development of genome-editing technology is likely to erode the importance of patent estates and licensing regimes and may mitigate the effect of overly broad patents, giving rise to new substitutes to effectuate commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信