用于低挥发性前体的蒸汽抽取安瓿的基于实验的建模。

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Brent A Sperling, James E Maslar
{"title":"用于低挥发性前体的蒸汽抽取安瓿的基于实验的建模。","authors":"Brent A Sperling, James E Maslar","doi":"10.1116/1.5125446","DOIUrl":null,"url":null,"abstract":"<p><p>Delivery of low-volatility precursors is a continuing challenge for chemical vapor deposition and atomic layer deposition processes used for microelectronics manufacturing. To aid in addressing this problem, we have recently developed an inline measurement capable of monitoring precursor delivery. Motivated by a desire to better understand the origins of what is now observable, this study uses computational fluid dynamics and a relatively simple model to simulate the delivery of pentakis(dimethylamido)tantalum (PDMAT) from a commercial vapor draw ampoule. Parameters used in the model are obtained by fitting the performance of the ampoule to a limited dataset of PDMAT delivery rates obtained experimentally using a non-dispersive infrared sensor. The model shows good agreement with a much larger experimental dataset over a range of conditions in both pulsed and continuously flowing operation. The combined approach of experiment and simulation provides a means to understand the phenomena occurring during precursor delivery both quantitatively and qualitatively.</p>","PeriodicalId":38110,"journal":{"name":"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1116/1.5125446","citationCount":"3","resultStr":"{\"title\":\"Experiment-based modelling of a vapor draw ampoule used for low-volatility precursors.\",\"authors\":\"Brent A Sperling, James E Maslar\",\"doi\":\"10.1116/1.5125446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delivery of low-volatility precursors is a continuing challenge for chemical vapor deposition and atomic layer deposition processes used for microelectronics manufacturing. To aid in addressing this problem, we have recently developed an inline measurement capable of monitoring precursor delivery. Motivated by a desire to better understand the origins of what is now observable, this study uses computational fluid dynamics and a relatively simple model to simulate the delivery of pentakis(dimethylamido)tantalum (PDMAT) from a commercial vapor draw ampoule. Parameters used in the model are obtained by fitting the performance of the ampoule to a limited dataset of PDMAT delivery rates obtained experimentally using a non-dispersive infrared sensor. The model shows good agreement with a much larger experimental dataset over a range of conditions in both pulsed and continuously flowing operation. The combined approach of experiment and simulation provides a means to understand the phenomena occurring during precursor delivery both quantitatively and qualitatively.</p>\",\"PeriodicalId\":38110,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1116/1.5125446\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/1.5125446\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/1.5125446","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

对于用于微电子制造的化学气相沉积和原子层沉积工艺来说,低挥发性前体的交付是一个持续的挑战。为了帮助解决这个问题,我们最近开发了一种能够监测前体输送的在线测量方法。为了更好地理解现在可观察到的事物的起源,本研究使用计算流体动力学和一个相对简单的模型来模拟从商业蒸汽抽取安瓿中输送五akis(二甲胺)钽(PDMAT)。模型中使用的参数是通过将安瓿的性能拟合到使用非色散红外传感器实验获得的PDMAT输送率的有限数据集来获得的。该模型在脉冲和连续流动条件下与更大的实验数据集表现出良好的一致性。实验与模拟相结合的方法提供了一种定量和定性地了解前体传递过程中发生的现象的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experiment-based modelling of a vapor draw ampoule used for low-volatility precursors.

Experiment-based modelling of a vapor draw ampoule used for low-volatility precursors.

Experiment-based modelling of a vapor draw ampoule used for low-volatility precursors.

Experiment-based modelling of a vapor draw ampoule used for low-volatility precursors.

Delivery of low-volatility precursors is a continuing challenge for chemical vapor deposition and atomic layer deposition processes used for microelectronics manufacturing. To aid in addressing this problem, we have recently developed an inline measurement capable of monitoring precursor delivery. Motivated by a desire to better understand the origins of what is now observable, this study uses computational fluid dynamics and a relatively simple model to simulate the delivery of pentakis(dimethylamido)tantalum (PDMAT) from a commercial vapor draw ampoule. Parameters used in the model are obtained by fitting the performance of the ampoule to a limited dataset of PDMAT delivery rates obtained experimentally using a non-dispersive infrared sensor. The model shows good agreement with a much larger experimental dataset over a range of conditions in both pulsed and continuously flowing operation. The combined approach of experiment and simulation provides a means to understand the phenomena occurring during precursor delivery both quantitatively and qualitatively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
146
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信