{"title":"类风湿滑膜细胞表达的激活素A下调tnf α诱导的CXCL10表达和破骨细胞生成。","authors":"Tatsuomi Kuranobu, Sho Mokuda, Katsuhiro Oi, Tadahiro Tokunaga, Kazutoshi Yukawa, Hiroki Kohno, Yusuke Yoshida, Shintaro Hirata, Eiji Sugiyama","doi":"10.1159/000506260","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Activin A is known to be highly expressed in rheumatoid synovium. In the present study, we investigated the effect of inflammatory cytokines on activin A production and its role in rheumatoid inflammation using freshly prepared rheumatoid synovial cells (fresh-RSC).</p><p><strong>Methods: </strong>Fresh-RSC from patients with rheumatoid arthritis were obtained and stimulated with multiple cytokines for activin A production. Gene expression levels of activin A and inflammatory cytokines were determined by quantitative PCR (qPCR) analysis. An enzyme-linked immunosorbent assay (ELISA) was used to measure activin A and CXCL10 in culture supernatants. The osteoclasts generated from human peripheral monocytes by RANKL stimulation were identified by tartrate-resistant acid phosphatase staining and bone resorption assay using Osteo plate. The expression levels of NFATc1 and cathepsin K, critical intracellular proteins for osteoclastogenesis, were determined by Western blotting.</p><p><strong>Results: </strong>Activin A production in fresh-RSC was markedly enhanced by the synergistic effect of TGF-β1 with inflammatory cytokines, including TNFα, IL-1β, and IL-6. Activin A inhibited TNFα-induced CXCL10, an important chemoattractant for pathogen-activated T cells and monocytes of osteoclast precursors, but it did not affect the expression of inflammatory cytokines and chemokines. In addition, activin A directly inhibited the expression of NFATc1 and cathepsin K, as well as osteoclast formation in human samples.</p><p><strong>Conclusion: </strong>Our data indicated that TGF-β1 is involved in the expression of activin A at inflamed joints. Activin A mainly exerts an anti-inflammatory action, which prevents joint damage via the regulation of CXCL10 and osteoclastogenesis.</p>","PeriodicalId":244631,"journal":{"name":"Pathobiology : journal of immunopathology, molecular and cellular biology","volume":" ","pages":"198-207"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000506260","citationCount":"8","resultStr":"{\"title\":\"Activin A Expressed in Rheumatoid Synovial Cells Downregulates TNFα-Induced CXCL10 Expression and Osteoclastogenesis.\",\"authors\":\"Tatsuomi Kuranobu, Sho Mokuda, Katsuhiro Oi, Tadahiro Tokunaga, Kazutoshi Yukawa, Hiroki Kohno, Yusuke Yoshida, Shintaro Hirata, Eiji Sugiyama\",\"doi\":\"10.1159/000506260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Activin A is known to be highly expressed in rheumatoid synovium. In the present study, we investigated the effect of inflammatory cytokines on activin A production and its role in rheumatoid inflammation using freshly prepared rheumatoid synovial cells (fresh-RSC).</p><p><strong>Methods: </strong>Fresh-RSC from patients with rheumatoid arthritis were obtained and stimulated with multiple cytokines for activin A production. Gene expression levels of activin A and inflammatory cytokines were determined by quantitative PCR (qPCR) analysis. An enzyme-linked immunosorbent assay (ELISA) was used to measure activin A and CXCL10 in culture supernatants. The osteoclasts generated from human peripheral monocytes by RANKL stimulation were identified by tartrate-resistant acid phosphatase staining and bone resorption assay using Osteo plate. The expression levels of NFATc1 and cathepsin K, critical intracellular proteins for osteoclastogenesis, were determined by Western blotting.</p><p><strong>Results: </strong>Activin A production in fresh-RSC was markedly enhanced by the synergistic effect of TGF-β1 with inflammatory cytokines, including TNFα, IL-1β, and IL-6. Activin A inhibited TNFα-induced CXCL10, an important chemoattractant for pathogen-activated T cells and monocytes of osteoclast precursors, but it did not affect the expression of inflammatory cytokines and chemokines. In addition, activin A directly inhibited the expression of NFATc1 and cathepsin K, as well as osteoclast formation in human samples.</p><p><strong>Conclusion: </strong>Our data indicated that TGF-β1 is involved in the expression of activin A at inflamed joints. Activin A mainly exerts an anti-inflammatory action, which prevents joint damage via the regulation of CXCL10 and osteoclastogenesis.</p>\",\"PeriodicalId\":244631,\"journal\":{\"name\":\"Pathobiology : journal of immunopathology, molecular and cellular biology\",\"volume\":\" \",\"pages\":\"198-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000506260\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathobiology : journal of immunopathology, molecular and cellular biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000506260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology : journal of immunopathology, molecular and cellular biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000506260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Activin A Expressed in Rheumatoid Synovial Cells Downregulates TNFα-Induced CXCL10 Expression and Osteoclastogenesis.
Objective: Activin A is known to be highly expressed in rheumatoid synovium. In the present study, we investigated the effect of inflammatory cytokines on activin A production and its role in rheumatoid inflammation using freshly prepared rheumatoid synovial cells (fresh-RSC).
Methods: Fresh-RSC from patients with rheumatoid arthritis were obtained and stimulated with multiple cytokines for activin A production. Gene expression levels of activin A and inflammatory cytokines were determined by quantitative PCR (qPCR) analysis. An enzyme-linked immunosorbent assay (ELISA) was used to measure activin A and CXCL10 in culture supernatants. The osteoclasts generated from human peripheral monocytes by RANKL stimulation were identified by tartrate-resistant acid phosphatase staining and bone resorption assay using Osteo plate. The expression levels of NFATc1 and cathepsin K, critical intracellular proteins for osteoclastogenesis, were determined by Western blotting.
Results: Activin A production in fresh-RSC was markedly enhanced by the synergistic effect of TGF-β1 with inflammatory cytokines, including TNFα, IL-1β, and IL-6. Activin A inhibited TNFα-induced CXCL10, an important chemoattractant for pathogen-activated T cells and monocytes of osteoclast precursors, but it did not affect the expression of inflammatory cytokines and chemokines. In addition, activin A directly inhibited the expression of NFATc1 and cathepsin K, as well as osteoclast formation in human samples.
Conclusion: Our data indicated that TGF-β1 is involved in the expression of activin A at inflamed joints. Activin A mainly exerts an anti-inflammatory action, which prevents joint damage via the regulation of CXCL10 and osteoclastogenesis.