Shaun Harker, Miroslav Kramár, Rachel Levanger, Konstantin Mischaikow
{"title":"交错持久化模块的比较框架。","authors":"Shaun Harker, Miroslav Kramár, Rachel Levanger, Konstantin Mischaikow","doi":"10.1007/s41468-019-00026-x","DOIUrl":null,"url":null,"abstract":"<p><p>We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for <math><mi>ℝ</mi></math> -indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.</p>","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":"3 1-2","pages":"85-118"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41468-019-00026-x","citationCount":"13","resultStr":"{\"title\":\"A comparison framework for interleaved persistence modules.\",\"authors\":\"Shaun Harker, Miroslav Kramár, Rachel Levanger, Konstantin Mischaikow\",\"doi\":\"10.1007/s41468-019-00026-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for <math><mi>ℝ</mi></math> -indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.</p>\",\"PeriodicalId\":73600,\"journal\":{\"name\":\"Journal of applied and computational topology\",\"volume\":\"3 1-2\",\"pages\":\"85-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41468-019-00026-x\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied and computational topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41468-019-00026-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-019-00026-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison framework for interleaved persistence modules.
We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for -indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.