Simone Bruno, M Ali Al-Radhawi, Eduardo D Sontag, Domitilla Del Vecchio
{"title":"遗传反馈控制器对多能基因调控网络重编程的随机分析。","authors":"Simone Bruno, M Ali Al-Radhawi, Eduardo D Sontag, Domitilla Del Vecchio","doi":"10.23919/acc.2019.8814355","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular reprogramming is traditionally accomplished through an open loop (OL) control approach, wherein key transcription factors (TFs) are injected in cells to steer the state of the pluripotency (PL) gene regulatory network (GRN), as encoded by TFs concentrations, to the pluripotent state. Due to the OL nature of this approach, the concentration of TFs cannot be accurately controlled. Recently, a closed loop (CL) feedback control strategy was proposed to overcome this problem with promising theoretical results. However, previous analyses of the controller were based on deterministic models. It is well known that cellular systems are characterized by substantial stochasticity, especially when molecules are in low copy number as it is the case in reprogramming problems wherein the gene copy number is usually one or two. Hence, in this paper, we analyze the Chemical Master Equation (CME) for the reaction model of the PL GRN with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when both the PL GRN and the controller are stochastic.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2019 ","pages":"5089-5096"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/acc.2019.8814355","citationCount":"3","resultStr":"{\"title\":\"Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network.\",\"authors\":\"Simone Bruno, M Ali Al-Radhawi, Eduardo D Sontag, Domitilla Del Vecchio\",\"doi\":\"10.23919/acc.2019.8814355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular reprogramming is traditionally accomplished through an open loop (OL) control approach, wherein key transcription factors (TFs) are injected in cells to steer the state of the pluripotency (PL) gene regulatory network (GRN), as encoded by TFs concentrations, to the pluripotent state. Due to the OL nature of this approach, the concentration of TFs cannot be accurately controlled. Recently, a closed loop (CL) feedback control strategy was proposed to overcome this problem with promising theoretical results. However, previous analyses of the controller were based on deterministic models. It is well known that cellular systems are characterized by substantial stochasticity, especially when molecules are in low copy number as it is the case in reprogramming problems wherein the gene copy number is usually one or two. Hence, in this paper, we analyze the Chemical Master Equation (CME) for the reaction model of the PL GRN with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when both the PL GRN and the controller are stochastic.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2019 \",\"pages\":\"5089-5096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.23919/acc.2019.8814355\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc.2019.8814355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc.2019.8814355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network.
Cellular reprogramming is traditionally accomplished through an open loop (OL) control approach, wherein key transcription factors (TFs) are injected in cells to steer the state of the pluripotency (PL) gene regulatory network (GRN), as encoded by TFs concentrations, to the pluripotent state. Due to the OL nature of this approach, the concentration of TFs cannot be accurately controlled. Recently, a closed loop (CL) feedback control strategy was proposed to overcome this problem with promising theoretical results. However, previous analyses of the controller were based on deterministic models. It is well known that cellular systems are characterized by substantial stochasticity, especially when molecules are in low copy number as it is the case in reprogramming problems wherein the gene copy number is usually one or two. Hence, in this paper, we analyze the Chemical Master Equation (CME) for the reaction model of the PL GRN with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when both the PL GRN and the controller are stochastic.