Xiyu Yu, Tongliang Liu, Mingming Gong, Kayhan Batmanghelich, Dacheng Tao
{"title":"基于线性无关假设的混合比例估计的有效且可证明的方法。","authors":"Xiyu Yu, Tongliang Liu, Mingming Gong, Kayhan Batmanghelich, Dacheng Tao","doi":"10.1109/CVPR.2018.00471","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the mixture proportion estimation (MPE) problem in a new setting: given samples from the mixture and the component distributions, we identify the proportions of the components in the mixture distribution. To address this problem, we make use of a linear independence assumption, i.e., the component distributions are independent from each other, which is much weaker than assumptions exploited in the previous MPE methods. Based on this assumption, we propose a method (1) that uniquely identifies the mixture proportions, (2) whose output provably converges to the optimal solution, and (3) that is computationally efficient. We show the superiority of the proposed method over the state-of-the-art methods in two applications including learning with label noise and semi-supervised learning on both synthetic and real-world datasets.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"2018 ","pages":"4480-4489"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CVPR.2018.00471","citationCount":"45","resultStr":"{\"title\":\"An Efficient and Provable Approach for Mixture Proportion Estimation Using Linear Independence Assumption.\",\"authors\":\"Xiyu Yu, Tongliang Liu, Mingming Gong, Kayhan Batmanghelich, Dacheng Tao\",\"doi\":\"10.1109/CVPR.2018.00471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we study the mixture proportion estimation (MPE) problem in a new setting: given samples from the mixture and the component distributions, we identify the proportions of the components in the mixture distribution. To address this problem, we make use of a linear independence assumption, i.e., the component distributions are independent from each other, which is much weaker than assumptions exploited in the previous MPE methods. Based on this assumption, we propose a method (1) that uniquely identifies the mixture proportions, (2) whose output provably converges to the optimal solution, and (3) that is computationally efficient. We show the superiority of the proposed method over the state-of-the-art methods in two applications including learning with label noise and semi-supervised learning on both synthetic and real-world datasets.</p>\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"2018 \",\"pages\":\"4480-4489\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CVPR.2018.00471\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient and Provable Approach for Mixture Proportion Estimation Using Linear Independence Assumption.
In this paper, we study the mixture proportion estimation (MPE) problem in a new setting: given samples from the mixture and the component distributions, we identify the proportions of the components in the mixture distribution. To address this problem, we make use of a linear independence assumption, i.e., the component distributions are independent from each other, which is much weaker than assumptions exploited in the previous MPE methods. Based on this assumption, we propose a method (1) that uniquely identifies the mixture proportions, (2) whose output provably converges to the optimal solution, and (3) that is computationally efficient. We show the superiority of the proposed method over the state-of-the-art methods in two applications including learning with label noise and semi-supervised learning on both synthetic and real-world datasets.