基于深度强化学习的自适应学习的好奇心驱动推荐策略。

Ruijian Han, Kani Chen, Chunxi Tan
{"title":"基于深度强化学习的自适应学习的好奇心驱动推荐策略。","authors":"Ruijian Han,&nbsp;Kani Chen,&nbsp;Chunxi Tan","doi":"10.1111/bmsp.12199","DOIUrl":null,"url":null,"abstract":"<p><p>The design of recommendation strategies in the adaptive learning systems focuses on utilizing currently available information to provide learners with individual-specific learning instructions. As a critical motivate for human behaviours, curiosity is essentially the drive to explore knowledge and seek information. In a psychologically inspired view, we propose a curiosity-driven recommendation policy within the reinforcement learning framework, allowing for an efficient and enjoyable personalized learning path. Specifically, a curiosity reward from a well-designed predictive model is generated to model one's familiarity with the knowledge space. Given such curiosity rewards, we apply the actor-critic method to approximate the policy directly through neural networks. Numerical analyses with a large continuous knowledge state space and concrete learning scenarios are provided to further demonstrate the efficiency of the proposed method.</p>","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"73 3","pages":"522-540"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12199","citationCount":"10","resultStr":"{\"title\":\"Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.\",\"authors\":\"Ruijian Han,&nbsp;Kani Chen,&nbsp;Chunxi Tan\",\"doi\":\"10.1111/bmsp.12199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The design of recommendation strategies in the adaptive learning systems focuses on utilizing currently available information to provide learners with individual-specific learning instructions. As a critical motivate for human behaviours, curiosity is essentially the drive to explore knowledge and seek information. In a psychologically inspired view, we propose a curiosity-driven recommendation policy within the reinforcement learning framework, allowing for an efficient and enjoyable personalized learning path. Specifically, a curiosity reward from a well-designed predictive model is generated to model one's familiarity with the knowledge space. Given such curiosity rewards, we apply the actor-critic method to approximate the policy directly through neural networks. Numerical analyses with a large continuous knowledge state space and concrete learning scenarios are provided to further demonstrate the efficiency of the proposed method.</p>\",\"PeriodicalId\":272649,\"journal\":{\"name\":\"The British journal of mathematical and statistical psychology\",\"volume\":\"73 3\",\"pages\":\"522-540\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/bmsp.12199\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The British journal of mathematical and statistical psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

作为人类行为的重要动力,好奇心本质上是探索知识和寻求信息的动力。在心理学启发的观点中,我们在强化学习框架内提出了一个好奇心驱动的推荐策略,允许一个高效和愉快的个性化学习路径。具体来说,从设计良好的预测模型中产生好奇心奖励,以模拟人们对知识空间的熟悉程度。给定这样的好奇心奖励,我们应用行动者-评论家方法直接通过神经网络近似策略。在一个大的连续知识状态空间和具体的学习场景下进行了数值分析,进一步验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.

The design of recommendation strategies in the adaptive learning systems focuses on utilizing currently available information to provide learners with individual-specific learning instructions. As a critical motivate for human behaviours, curiosity is essentially the drive to explore knowledge and seek information. In a psychologically inspired view, we propose a curiosity-driven recommendation policy within the reinforcement learning framework, allowing for an efficient and enjoyable personalized learning path. Specifically, a curiosity reward from a well-designed predictive model is generated to model one's familiarity with the knowledge space. Given such curiosity rewards, we apply the actor-critic method to approximate the policy directly through neural networks. Numerical analyses with a large continuous knowledge state space and concrete learning scenarios are provided to further demonstrate the efficiency of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信