深度学习重建技术在3特斯拉机器高分辨率非对比磁共振冠状动脉造影中的效果。

Yasuhiro Yokota, Chika Takeda, Masafumi Kidoh, Seitaro Oda, Ryo Aoki, Kenichi Ito, Kosuke Morita, Kentaro Haraoka, Yuichi Yamashita, Hitoshi Iizuka, Shingo Kato, Kenichi Tsujita, Osamu Ikeda, Yasuyuki Yamashita, Daisuke Utsunomiya
{"title":"深度学习重建技术在3特斯拉机器高分辨率非对比磁共振冠状动脉造影中的效果。","authors":"Yasuhiro Yokota,&nbsp;Chika Takeda,&nbsp;Masafumi Kidoh,&nbsp;Seitaro Oda,&nbsp;Ryo Aoki,&nbsp;Kenichi Ito,&nbsp;Kosuke Morita,&nbsp;Kentaro Haraoka,&nbsp;Yuichi Yamashita,&nbsp;Hitoshi Iizuka,&nbsp;Shingo Kato,&nbsp;Kenichi Tsujita,&nbsp;Osamu Ikeda,&nbsp;Yasuyuki Yamashita,&nbsp;Daisuke Utsunomiya","doi":"10.1177/0846537119900469","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the effects of deep learning reconstruction (DLR) in qualitative and quantitative image quality of non-contrast magnetic resonance coronary angiography (MRCA).</p><p><strong>Methods: </strong>Ten healthy volunteers underwent conventional MRCA (C-MRCA) and high-resolution (HR) MRCA on a 3T magnetic resonance imaging with a voxel size of 1.8 × 1.1 × 1.7 mm<sup>3</sup> and 1.8 × 0.6 × 1.0 mm<sup>3</sup>, respectively, for C-MRCA and HR-MRCA. High-resolution magnetic resonance coronary angiography was also reconstructed with the DLR technique (DLR-HR-MRCA). We compared the contrast-to-noise ratio (CNR) and visual evaluation scores for vessel sharpness and traceability of proximal and distal coronary vessels on a 4-point scale among 3 image series.</p><p><strong>Results: </strong>The vascular CNR value on the C-MRCA and the DLR-HR-MRCA was significantly higher than that on the HR-MRCA in the proximal and distal coronary arteries (13.9 ± 6.4, 11.3 ± 4.4, and 7.8 ± 2.6 for C-MRCA, DLR-HR-MRCA, and HR-MRCA, <i>P</i> < .05, respectively). Mean visual evaluation scores for the vessel sharpness and traceability of proximal and distal coronary vessels were significantly higher on the HR-DLR-MRCA than the C-MRCA (<i>P</i> < .05, respectively).</p><p><strong>Conclusion: </strong>Deep learning reconstruction significantly improved the CNR of coronary arteries on HR-MRCA, resulting in both higher visual image quality and better vessel traceability compared with C-MRCA.</p>","PeriodicalId":444006,"journal":{"name":"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes","volume":" ","pages":"120-127"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0846537119900469","citationCount":"19","resultStr":"{\"title\":\"Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine.\",\"authors\":\"Yasuhiro Yokota,&nbsp;Chika Takeda,&nbsp;Masafumi Kidoh,&nbsp;Seitaro Oda,&nbsp;Ryo Aoki,&nbsp;Kenichi Ito,&nbsp;Kosuke Morita,&nbsp;Kentaro Haraoka,&nbsp;Yuichi Yamashita,&nbsp;Hitoshi Iizuka,&nbsp;Shingo Kato,&nbsp;Kenichi Tsujita,&nbsp;Osamu Ikeda,&nbsp;Yasuyuki Yamashita,&nbsp;Daisuke Utsunomiya\",\"doi\":\"10.1177/0846537119900469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the effects of deep learning reconstruction (DLR) in qualitative and quantitative image quality of non-contrast magnetic resonance coronary angiography (MRCA).</p><p><strong>Methods: </strong>Ten healthy volunteers underwent conventional MRCA (C-MRCA) and high-resolution (HR) MRCA on a 3T magnetic resonance imaging with a voxel size of 1.8 × 1.1 × 1.7 mm<sup>3</sup> and 1.8 × 0.6 × 1.0 mm<sup>3</sup>, respectively, for C-MRCA and HR-MRCA. High-resolution magnetic resonance coronary angiography was also reconstructed with the DLR technique (DLR-HR-MRCA). We compared the contrast-to-noise ratio (CNR) and visual evaluation scores for vessel sharpness and traceability of proximal and distal coronary vessels on a 4-point scale among 3 image series.</p><p><strong>Results: </strong>The vascular CNR value on the C-MRCA and the DLR-HR-MRCA was significantly higher than that on the HR-MRCA in the proximal and distal coronary arteries (13.9 ± 6.4, 11.3 ± 4.4, and 7.8 ± 2.6 for C-MRCA, DLR-HR-MRCA, and HR-MRCA, <i>P</i> < .05, respectively). Mean visual evaluation scores for the vessel sharpness and traceability of proximal and distal coronary vessels were significantly higher on the HR-DLR-MRCA than the C-MRCA (<i>P</i> < .05, respectively).</p><p><strong>Conclusion: </strong>Deep learning reconstruction significantly improved the CNR of coronary arteries on HR-MRCA, resulting in both higher visual image quality and better vessel traceability compared with C-MRCA.</p>\",\"PeriodicalId\":444006,\"journal\":{\"name\":\"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes\",\"volume\":\" \",\"pages\":\"120-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0846537119900469\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0846537119900469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0846537119900469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

目的:评价深度学习重建(DLR)对非对比磁共振冠状动脉造影(MRCA)定性和定量图像质量的影响。方法:10名健康志愿者在体素尺寸分别为1.8 × 1.1 × 1.7 mm3和1.8 × 0.6 × 1.0 mm3的3T磁共振成像上进行常规MRCA (C-MRCA)和高分辨率MRCA (HR),分别为C-MRCA和HR-MRCA。采用DLR技术重建高分辨率磁共振冠状动脉造影(DLR- hr - mrca)。我们比较了3个图像序列中近端和远端冠状动脉血管的对比度-噪声比(CNR)和视觉评价评分(4分制)的锐度和可追溯性。结果:C-MRCA和DLR-HR-MRCA的血管CNR值显著高于冠状动脉近端和远端HR-MRCA的CNR值(C-MRCA、DLR-HR-MRCA和HR-MRCA分别为13.9±6.4、11.3±4.4和7.8±2.6,P < 0.05)。HR-DLR-MRCA对近端和远端冠状动脉血管的锐度和可追溯性的平均视觉评价评分显著高于C-MRCA (P < 0.05)。结论:深度学习重建显著提高了HR-MRCA冠状动脉的CNR,与C-MRCA相比,视觉图像质量更高,血管可追溯性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine.

Purpose: To evaluate the effects of deep learning reconstruction (DLR) in qualitative and quantitative image quality of non-contrast magnetic resonance coronary angiography (MRCA).

Methods: Ten healthy volunteers underwent conventional MRCA (C-MRCA) and high-resolution (HR) MRCA on a 3T magnetic resonance imaging with a voxel size of 1.8 × 1.1 × 1.7 mm3 and 1.8 × 0.6 × 1.0 mm3, respectively, for C-MRCA and HR-MRCA. High-resolution magnetic resonance coronary angiography was also reconstructed with the DLR technique (DLR-HR-MRCA). We compared the contrast-to-noise ratio (CNR) and visual evaluation scores for vessel sharpness and traceability of proximal and distal coronary vessels on a 4-point scale among 3 image series.

Results: The vascular CNR value on the C-MRCA and the DLR-HR-MRCA was significantly higher than that on the HR-MRCA in the proximal and distal coronary arteries (13.9 ± 6.4, 11.3 ± 4.4, and 7.8 ± 2.6 for C-MRCA, DLR-HR-MRCA, and HR-MRCA, P < .05, respectively). Mean visual evaluation scores for the vessel sharpness and traceability of proximal and distal coronary vessels were significantly higher on the HR-DLR-MRCA than the C-MRCA (P < .05, respectively).

Conclusion: Deep learning reconstruction significantly improved the CNR of coronary arteries on HR-MRCA, resulting in both higher visual image quality and better vessel traceability compared with C-MRCA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信