Yingjia Sun, Xinghao Ai, Jingwen Hou, Xiangyun Ye, Ruijun Liu, Shengping Shen, Ziming Li and Shun Lu
{"title":"从海洋天然产物中综合发现fox01 - dna稳定剂,以恢复转移性肺癌抗egfr治疗的化学敏感性","authors":"Yingjia Sun, Xinghao Ai, Jingwen Hou, Xiangyun Ye, Ruijun Liu, Shengping Shen, Ziming Li and Shun Lu","doi":"10.1039/C6MB00678G","DOIUrl":null,"url":null,"abstract":"<p >The transcription factor forkhead box O1 (FOXO1) negatively regulates activated EGFR signaling by turning on the gene expression of tumor suppressor Kruppel-like factor 6. Here, we propose that the chemosensitivity to anti-EGFR-based lung cancer therapy can be restored by stabilization of the FOXO1–DNA complex architecture using small-molecule marine natural medicines. A synthetic protocol that integrates computational ligand–protein–DNA binding analysis and an experimental fluorescence binding assay was applied against a large library of structurally diverse, drug-like marine natural products to discover novel stabilizers of DNA-bound FOXO1 conformation. The screening utilized chemical similarity analysis to exclude structurally redundant compounds, and then carried out high-throughput molecular docking and computational binding analysis to identify potential marine natural product candidates. Consequently, eight commercially available hits were selected and tested <em>in vitro</em>, from which four marine natural product compounds (tanzawaic acid D, hymenidin, cribrostatin 6 and barbamide) were found to have high or moderate potency to selectively bind to the FOXO1 DNA-binding domain (DBD) in the presence of its cognate DNA partner. Atomistic molecular dynamics (MD) simulations revealed that the identified stabilizers do not directly interact with DNA; instead, they can effectively stabilize the free FOXO1 DBD domain in the DNA-bound conformation and thus promote the binding of FOXO1 to DNA.</p>","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":" 2","pages":" 330-337"},"PeriodicalIF":3.7430,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C6MB00678G","citationCount":"8","resultStr":"{\"title\":\"Integrated discovery of FOXO1–DNA stabilizers from marine natural products to restore chemosensitivity to anti-EGFR-based therapy for metastatic lung cancer\",\"authors\":\"Yingjia Sun, Xinghao Ai, Jingwen Hou, Xiangyun Ye, Ruijun Liu, Shengping Shen, Ziming Li and Shun Lu\",\"doi\":\"10.1039/C6MB00678G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The transcription factor forkhead box O1 (FOXO1) negatively regulates activated EGFR signaling by turning on the gene expression of tumor suppressor Kruppel-like factor 6. Here, we propose that the chemosensitivity to anti-EGFR-based lung cancer therapy can be restored by stabilization of the FOXO1–DNA complex architecture using small-molecule marine natural medicines. A synthetic protocol that integrates computational ligand–protein–DNA binding analysis and an experimental fluorescence binding assay was applied against a large library of structurally diverse, drug-like marine natural products to discover novel stabilizers of DNA-bound FOXO1 conformation. The screening utilized chemical similarity analysis to exclude structurally redundant compounds, and then carried out high-throughput molecular docking and computational binding analysis to identify potential marine natural product candidates. Consequently, eight commercially available hits were selected and tested <em>in vitro</em>, from which four marine natural product compounds (tanzawaic acid D, hymenidin, cribrostatin 6 and barbamide) were found to have high or moderate potency to selectively bind to the FOXO1 DNA-binding domain (DBD) in the presence of its cognate DNA partner. Atomistic molecular dynamics (MD) simulations revealed that the identified stabilizers do not directly interact with DNA; instead, they can effectively stabilize the free FOXO1 DBD domain in the DNA-bound conformation and thus promote the binding of FOXO1 to DNA.</p>\",\"PeriodicalId\":90,\"journal\":{\"name\":\"Molecular BioSystems\",\"volume\":\" 2\",\"pages\":\" 330-337\"},\"PeriodicalIF\":3.7430,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C6MB00678G\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular BioSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c6mb00678g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c6mb00678g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Integrated discovery of FOXO1–DNA stabilizers from marine natural products to restore chemosensitivity to anti-EGFR-based therapy for metastatic lung cancer
The transcription factor forkhead box O1 (FOXO1) negatively regulates activated EGFR signaling by turning on the gene expression of tumor suppressor Kruppel-like factor 6. Here, we propose that the chemosensitivity to anti-EGFR-based lung cancer therapy can be restored by stabilization of the FOXO1–DNA complex architecture using small-molecule marine natural medicines. A synthetic protocol that integrates computational ligand–protein–DNA binding analysis and an experimental fluorescence binding assay was applied against a large library of structurally diverse, drug-like marine natural products to discover novel stabilizers of DNA-bound FOXO1 conformation. The screening utilized chemical similarity analysis to exclude structurally redundant compounds, and then carried out high-throughput molecular docking and computational binding analysis to identify potential marine natural product candidates. Consequently, eight commercially available hits were selected and tested in vitro, from which four marine natural product compounds (tanzawaic acid D, hymenidin, cribrostatin 6 and barbamide) were found to have high or moderate potency to selectively bind to the FOXO1 DNA-binding domain (DBD) in the presence of its cognate DNA partner. Atomistic molecular dynamics (MD) simulations revealed that the identified stabilizers do not directly interact with DNA; instead, they can effectively stabilize the free FOXO1 DBD domain in the DNA-bound conformation and thus promote the binding of FOXO1 to DNA.
期刊介绍:
Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.