宽带稀疏谱估计中一种新的无混叠子带信息融合方法。

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ji-An Luo, Xiao-Ping Zhang, Zhi Wang
{"title":"宽带稀疏谱估计中一种新的无混叠子带信息融合方法。","authors":"Ji-An Luo,&nbsp;Xiao-Ping Zhang,&nbsp;Zhi Wang","doi":"10.1186/s13634-017-0494-8","DOIUrl":null,"url":null,"abstract":"<p><p>Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.</p>","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"2017 1","pages":"61"},"PeriodicalIF":1.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13634-017-0494-8","citationCount":"4","resultStr":"{\"title\":\"A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.\",\"authors\":\"Ji-An Luo,&nbsp;Xiao-Ping Zhang,&nbsp;Zhi Wang\",\"doi\":\"10.1186/s13634-017-0494-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.</p>\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":\"2017 1\",\"pages\":\"61\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13634-017-0494-8\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-017-0494-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-017-0494-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

宽带稀疏谱估计通常被表述为一个多字典/多测量(MD/MM)问题,可以通过群稀疏性技术来解决。本文以引入额外的系统误差为代价,将MD/MM问题重新表述为单个稀疏指示向量(SIV)恢复问题。这样,未知量就大大减少了。证明了在一定条件下,系统误差可以忽略不计。然后,我们提出了一种新的子带信息融合(SIF)方法,通过联合利用所有的频带来估计SIV。利用正交匹配追踪(OMP)算法,利用SIV分量的二值性,提出了一种基于正交匹配追踪的SIF-OMP算法来重建SIV。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.

A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.

A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.

A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation.

Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Advances in Signal Processing
Eurasip Journal on Advances in Signal Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
3.40
自引率
10.50%
发文量
109
审稿时长
3-8 weeks
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信