{"title":"统计多关系学习中潜在因素数量的确定。","authors":"Chengchun Shi, Wenbin Lu, Rui Song","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical relational learning is primarily concerned with learning and inferring relationships between entities in large-scale knowledge graphs. Nickel et al. (2011) proposed a RESCAL tensor factorization model for statistical relational learning, which achieves better or at least comparable results on common benchmark data sets when compared to other state-of-the-art methods. Given a positive integer <i>s</i>, RESCAL computes an <i>s</i>-dimensional latent vector for each entity. The latent factors can be further used for solving relational learning tasks, such as collective classification, collective entity resolution and link-based clustering. The focus of this paper is to determine the number of latent factors in the RESCAL model. Due to the structure of the RESCAL model, its log-likelihood function is not concave. As a result, the corresponding maximum likelihood estimators (MLEs) may not be consistent. Nonetheless, we design a specific pseudometric, prove the consistency of the MLEs under this pseudometric and establish its rate of convergence. Based on these results, we propose a general class of information criteria and prove their model selection consistencies when the number of relations is either bounded or diverges at a proper rate of the number of entities. Simulations and real data examples show that our proposed information criteria have good finite sample properties.</p>","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determining the Number of Latent Factors in Statistical Multi-Relational Learning.\",\"authors\":\"Chengchun Shi, Wenbin Lu, Rui Song\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statistical relational learning is primarily concerned with learning and inferring relationships between entities in large-scale knowledge graphs. Nickel et al. (2011) proposed a RESCAL tensor factorization model for statistical relational learning, which achieves better or at least comparable results on common benchmark data sets when compared to other state-of-the-art methods. Given a positive integer <i>s</i>, RESCAL computes an <i>s</i>-dimensional latent vector for each entity. The latent factors can be further used for solving relational learning tasks, such as collective classification, collective entity resolution and link-based clustering. The focus of this paper is to determine the number of latent factors in the RESCAL model. Due to the structure of the RESCAL model, its log-likelihood function is not concave. As a result, the corresponding maximum likelihood estimators (MLEs) may not be consistent. Nonetheless, we design a specific pseudometric, prove the consistency of the MLEs under this pseudometric and establish its rate of convergence. Based on these results, we propose a general class of information criteria and prove their model selection consistencies when the number of relations is either bounded or diverges at a proper rate of the number of entities. Simulations and real data examples show that our proposed information criteria have good finite sample properties.</p>\",\"PeriodicalId\":314696,\"journal\":{\"name\":\"Journal of machine learning research : JMLR\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of machine learning research : JMLR\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"94","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determining the Number of Latent Factors in Statistical Multi-Relational Learning.
Statistical relational learning is primarily concerned with learning and inferring relationships between entities in large-scale knowledge graphs. Nickel et al. (2011) proposed a RESCAL tensor factorization model for statistical relational learning, which achieves better or at least comparable results on common benchmark data sets when compared to other state-of-the-art methods. Given a positive integer s, RESCAL computes an s-dimensional latent vector for each entity. The latent factors can be further used for solving relational learning tasks, such as collective classification, collective entity resolution and link-based clustering. The focus of this paper is to determine the number of latent factors in the RESCAL model. Due to the structure of the RESCAL model, its log-likelihood function is not concave. As a result, the corresponding maximum likelihood estimators (MLEs) may not be consistent. Nonetheless, we design a specific pseudometric, prove the consistency of the MLEs under this pseudometric and establish its rate of convergence. Based on these results, we propose a general class of information criteria and prove their model selection consistencies when the number of relations is either bounded or diverges at a proper rate of the number of entities. Simulations and real data examples show that our proposed information criteria have good finite sample properties.