{"title":"MapR:一种在全基因组范围内鉴定天然r -环的方法","authors":"Qingqing Yan, Kavitha Sarma","doi":"10.1002/cpmb.113","DOIUrl":null,"url":null,"abstract":"<p>R-loops are abundant, RNA-containing chromatin structures that form in the genomes of both eukaryotes and prokaryotes. Devising methods to identify the precise genomic locations of R-loops is critical to understand how these structures regulate numerous cellular processes, including replication, termination, and chromosome segregation, and how their unscheduled formation results in disease. Here, we describe a new, highly sensitive, and antibody-independent method, MapR, to profile native R-loops genome wide. MapR takes advantage of the natural specificity of the RNase H enzyme to recognize DNA:RNA hybrids, a defining feature of R-loops, and combines it with a CUT&RUN approach to target, cleave, and release R-loops that can then be sequenced. MapR has low background, is faster than current R-loop detection technologies, and can be performed in any cell type without the need to generate stable cell lines. © 2020 by John Wiley & Sons, Inc.</p>","PeriodicalId":10734,"journal":{"name":"Current Protocols in Molecular Biology","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmb.113","citationCount":"12","resultStr":"{\"title\":\"MapR: A Method for Identifying Native R-Loops Genome Wide\",\"authors\":\"Qingqing Yan, Kavitha Sarma\",\"doi\":\"10.1002/cpmb.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>R-loops are abundant, RNA-containing chromatin structures that form in the genomes of both eukaryotes and prokaryotes. Devising methods to identify the precise genomic locations of R-loops is critical to understand how these structures regulate numerous cellular processes, including replication, termination, and chromosome segregation, and how their unscheduled formation results in disease. Here, we describe a new, highly sensitive, and antibody-independent method, MapR, to profile native R-loops genome wide. MapR takes advantage of the natural specificity of the RNase H enzyme to recognize DNA:RNA hybrids, a defining feature of R-loops, and combines it with a CUT&RUN approach to target, cleave, and release R-loops that can then be sequenced. MapR has low background, is faster than current R-loop detection technologies, and can be performed in any cell type without the need to generate stable cell lines. © 2020 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":10734,\"journal\":{\"name\":\"Current Protocols in Molecular Biology\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmb.113\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12