{"title":"在成纤维细胞中,FHL2的缺失通过抑制TGF-β1诱导的Wnt/β-catenin信号传导来减弱成纤维细胞的活化和肾纤维化。","authors":"Ying Duan, Yumei Qiu, Xiaowen Huang, Chunsun Dai, Junwei Yang, Weichun He","doi":"10.1007/s00109-019-01870-1","DOIUrl":null,"url":null,"abstract":"<p><p>Four-and-a-half LIM domains protein 2 (FHL2) has been proposed involving in β-catenin activity. We previously reported that FHL2 mediates TGF-β1-induced tubular epithelial-to-mesenchymal transition through activating Wnt/β-catenin signaling. However, the potential role and mechanism for FHL2 in TGF-β1-induced fibroblast activation and kidney fibrosis remains unknown. Here, we initially observed higher levels of FHL2 expression in fibrotic kidneys from both patients and mice, especially in α-smooth muscle actin (α-SMA)-positive cells in the interstitium. In cultured interstitial fibroblasts, FHL2 expression was induced by TGF-β1. Knockdown of FHL2 remarkably suppressed TGF-β1-induced α-SMA, type I collagen, and fibronectin expression, while overexpression of FHL2 was sufficient to activate fibroblasts. In mice, fibroblast-specific deletion of FHL2 diminished renal induction of α-SMA, type I collagen, and fibronectin and interstitial extracellular matrix deposition at 2 weeks after ureteral obstruction. We next investigated Wnt/β-catenin activity and found that β-catenin was activated in most FHL2-positive cells in renal interstitium from mice with obstructive nephropathy. In vitro, TGF-β1 induced a physical interaction between FHL2 and β-catenin, especially in the nucleus. Downregulation of FHL2 inhibited TGF-β1-induced active β-catenin upregulation, β-catenin nuclear translocation, and β-catenin-mediated transcription, whereas overexpression of FHL2 was able to activate Wnt/β-catenin signaling. FHL2 overexpression-induced β-catenin-mediated gene transcription could be hindered by ICG-001, but FHL2 overexpression-induced upregulation of active β-catenin could not be. Collectively, this study reveals that the signal regulatory effect of FHL2 on β-catenin plays an important role in TGF-β1-induced fibroblast activation and kidney fibrosis.</p>","PeriodicalId":520678,"journal":{"name":"Journal of molecular medicine (Berlin, Germany)","volume":" ","pages":"291-307"},"PeriodicalIF":4.2000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00109-019-01870-1","citationCount":"15","resultStr":"{\"title\":\"Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling.\",\"authors\":\"Ying Duan, Yumei Qiu, Xiaowen Huang, Chunsun Dai, Junwei Yang, Weichun He\",\"doi\":\"10.1007/s00109-019-01870-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Four-and-a-half LIM domains protein 2 (FHL2) has been proposed involving in β-catenin activity. We previously reported that FHL2 mediates TGF-β1-induced tubular epithelial-to-mesenchymal transition through activating Wnt/β-catenin signaling. However, the potential role and mechanism for FHL2 in TGF-β1-induced fibroblast activation and kidney fibrosis remains unknown. Here, we initially observed higher levels of FHL2 expression in fibrotic kidneys from both patients and mice, especially in α-smooth muscle actin (α-SMA)-positive cells in the interstitium. In cultured interstitial fibroblasts, FHL2 expression was induced by TGF-β1. Knockdown of FHL2 remarkably suppressed TGF-β1-induced α-SMA, type I collagen, and fibronectin expression, while overexpression of FHL2 was sufficient to activate fibroblasts. In mice, fibroblast-specific deletion of FHL2 diminished renal induction of α-SMA, type I collagen, and fibronectin and interstitial extracellular matrix deposition at 2 weeks after ureteral obstruction. We next investigated Wnt/β-catenin activity and found that β-catenin was activated in most FHL2-positive cells in renal interstitium from mice with obstructive nephropathy. In vitro, TGF-β1 induced a physical interaction between FHL2 and β-catenin, especially in the nucleus. Downregulation of FHL2 inhibited TGF-β1-induced active β-catenin upregulation, β-catenin nuclear translocation, and β-catenin-mediated transcription, whereas overexpression of FHL2 was able to activate Wnt/β-catenin signaling. FHL2 overexpression-induced β-catenin-mediated gene transcription could be hindered by ICG-001, but FHL2 overexpression-induced upregulation of active β-catenin could not be. Collectively, this study reveals that the signal regulatory effect of FHL2 on β-catenin plays an important role in TGF-β1-induced fibroblast activation and kidney fibrosis.</p>\",\"PeriodicalId\":520678,\"journal\":{\"name\":\"Journal of molecular medicine (Berlin, Germany)\",\"volume\":\" \",\"pages\":\"291-307\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00109-019-01870-1\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular medicine (Berlin, Germany)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00109-019-01870-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular medicine (Berlin, Germany)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-019-01870-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling.
Four-and-a-half LIM domains protein 2 (FHL2) has been proposed involving in β-catenin activity. We previously reported that FHL2 mediates TGF-β1-induced tubular epithelial-to-mesenchymal transition through activating Wnt/β-catenin signaling. However, the potential role and mechanism for FHL2 in TGF-β1-induced fibroblast activation and kidney fibrosis remains unknown. Here, we initially observed higher levels of FHL2 expression in fibrotic kidneys from both patients and mice, especially in α-smooth muscle actin (α-SMA)-positive cells in the interstitium. In cultured interstitial fibroblasts, FHL2 expression was induced by TGF-β1. Knockdown of FHL2 remarkably suppressed TGF-β1-induced α-SMA, type I collagen, and fibronectin expression, while overexpression of FHL2 was sufficient to activate fibroblasts. In mice, fibroblast-specific deletion of FHL2 diminished renal induction of α-SMA, type I collagen, and fibronectin and interstitial extracellular matrix deposition at 2 weeks after ureteral obstruction. We next investigated Wnt/β-catenin activity and found that β-catenin was activated in most FHL2-positive cells in renal interstitium from mice with obstructive nephropathy. In vitro, TGF-β1 induced a physical interaction between FHL2 and β-catenin, especially in the nucleus. Downregulation of FHL2 inhibited TGF-β1-induced active β-catenin upregulation, β-catenin nuclear translocation, and β-catenin-mediated transcription, whereas overexpression of FHL2 was able to activate Wnt/β-catenin signaling. FHL2 overexpression-induced β-catenin-mediated gene transcription could be hindered by ICG-001, but FHL2 overexpression-induced upregulation of active β-catenin could not be. Collectively, this study reveals that the signal regulatory effect of FHL2 on β-catenin plays an important role in TGF-β1-induced fibroblast activation and kidney fibrosis.