{"title":"过程数据的马尔可夫转换潜主题模型。","authors":"Haochen Xu, Guanhua Fang, Zhiliang Ying","doi":"10.1111/bmsp.12197","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a latent topic model with a Markov transition for process data, which consists of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem-solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinee's latent state. Using topic transition probabilities along with response times enables us to capture examinees' learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem-solving item in the 2012 version of the Programme for International Student Assessment (PISA).</p>","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"73 3","pages":"474-505"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12197","citationCount":"3","resultStr":"{\"title\":\"A latent topic model with Markov transition for process data.\",\"authors\":\"Haochen Xu, Guanhua Fang, Zhiliang Ying\",\"doi\":\"10.1111/bmsp.12197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a latent topic model with a Markov transition for process data, which consists of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem-solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinee's latent state. Using topic transition probabilities along with response times enables us to capture examinees' learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem-solving item in the 2012 version of the Programme for International Student Assessment (PISA).</p>\",\"PeriodicalId\":272649,\"journal\":{\"name\":\"The British journal of mathematical and statistical psychology\",\"volume\":\"73 3\",\"pages\":\"474-505\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/bmsp.12197\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The British journal of mathematical and statistical psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A latent topic model with Markov transition for process data.
We propose a latent topic model with a Markov transition for process data, which consists of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem-solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinee's latent state. Using topic transition probabilities along with response times enables us to capture examinees' learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem-solving item in the 2012 version of the Programme for International Student Assessment (PISA).