动态、温度、化学和灰尘:自一致AGB风的成分。

J Boulangier, D Gobrecht, L Decin
{"title":"动态、温度、化学和灰尘:自一致AGB风的成分。","authors":"J Boulangier,&nbsp;D Gobrecht,&nbsp;L Decin","doi":"10.1017/S1743921318005094","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO<sub>2</sub>, SiO, MgO, and Al<sub>2</sub>O<sub>3</sub> clusters.</p>","PeriodicalId":74548,"journal":{"name":"Proceedings of the International Astronomical Union. International Astronomical Union","volume":"14 ","pages":"129-133"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1743921318005094","citationCount":"0","resultStr":"{\"title\":\"Dynamics, temperature, chemistry, and dust: Ingredients for a self-consistent AGB wind.\",\"authors\":\"J Boulangier,&nbsp;D Gobrecht,&nbsp;L Decin\",\"doi\":\"10.1017/S1743921318005094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO<sub>2</sub>, SiO, MgO, and Al<sub>2</sub>O<sub>3</sub> clusters.</p>\",\"PeriodicalId\":74548,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union. International Astronomical Union\",\"volume\":\"14 \",\"pages\":\"129-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1743921318005094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union. International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921318005094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union. International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921318005094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解渐近巨支(AGB)恒星非常重要,因为它们在星系的化学生命周期中起着至关重要的作用。AGB恒星正处于其生命的一个阶段,它们几乎耗尽了燃料,并通过恒星风向周围环境流失了大量物质。由于这是低质量恒星的演化阶段,几乎所有恒星都会经历这一阶段,使它们成为星系化学富集的主要贡献者之一。因此,了解这些恒星正在损失什么样的物质,损失的数量和速度是很重要的。这项工作总结了我们为开发自一致的AGB风模型所采取的步骤。我们首先通过耦合化学和流体动力学演化来改进现有模型,其次通过升级成核理论框架来研究TiO2, SiO, MgO和Al2O3簇的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics, temperature, chemistry, and dust: Ingredients for a self-consistent AGB wind.

Dynamics, temperature, chemistry, and dust: Ingredients for a self-consistent AGB wind.

Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO2, SiO, MgO, and Al2O3 clusters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信