心脏CT图像自动分割的集成三维解剖模型。

Pub Date : 2019-01-01 Epub Date: 2019-03-07 DOI:10.1080/21681163.2019.1583607
N Dahiya, A Yezzi, M Piccinelli, E Garcia
{"title":"心脏CT图像自动分割的集成三维解剖模型。","authors":"N Dahiya,&nbsp;A Yezzi,&nbsp;M Piccinelli,&nbsp;E Garcia","doi":"10.1080/21681163.2019.1583607","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation of epicardial and endocardial boundaries is a critical step in diagnosing cardiovascular function in heart patients. The manual tracing of organ contours in Computed Tomography Angiography (CTA) slices is subjective, time-consuming and impractical in clinical setting. We propose a novel multi-dimensional automatic edge detection algorithm based on shape priors and principal component analysis (PCA). We have developed a highly customized parametric model for implicit representations of segmenting curves (3D) for Left Ventricle (LV), Right Ventricle (RV), and Epicardium (Epi) used simultaneously to achieve myocardial segmentation. We have combined these representations in a region-based image modeling framework with high level constraints enabling the modeling of complex cardiac anatomical structures to automatically guide the segmentation of endo/epicardial boundaries. Test results on 30 short-axis CTA datasets show robust segmentation with error (mean ± std mm) of (1.46 ± 0.41), (2.06 ± 0.65), (2.88 ± 0.59) for LV, RV and Epi respectively.</p>","PeriodicalId":72671,"journal":{"name":"","volume":"7 5-6","pages":"690-706"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21681163.2019.1583607","citationCount":"13","resultStr":"{\"title\":\"Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.\",\"authors\":\"N Dahiya,&nbsp;A Yezzi,&nbsp;M Piccinelli,&nbsp;E Garcia\",\"doi\":\"10.1080/21681163.2019.1583607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Segmentation of epicardial and endocardial boundaries is a critical step in diagnosing cardiovascular function in heart patients. The manual tracing of organ contours in Computed Tomography Angiography (CTA) slices is subjective, time-consuming and impractical in clinical setting. We propose a novel multi-dimensional automatic edge detection algorithm based on shape priors and principal component analysis (PCA). We have developed a highly customized parametric model for implicit representations of segmenting curves (3D) for Left Ventricle (LV), Right Ventricle (RV), and Epicardium (Epi) used simultaneously to achieve myocardial segmentation. We have combined these representations in a region-based image modeling framework with high level constraints enabling the modeling of complex cardiac anatomical structures to automatically guide the segmentation of endo/epicardial boundaries. Test results on 30 short-axis CTA datasets show robust segmentation with error (mean ± std mm) of (1.46 ± 0.41), (2.06 ± 0.65), (2.88 ± 0.59) for LV, RV and Epi respectively.</p>\",\"PeriodicalId\":72671,\"journal\":{\"name\":\"\",\"volume\":\"7 5-6\",\"pages\":\"690-706\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21681163.2019.1583607\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681163.2019.1583607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2019.1583607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

心外膜和心内膜边界的分割是诊断心脏病患者心血管功能的关键步骤。计算机断层扫描血管造影(CTA)切片中器官轮廓的手工追踪是主观的,耗时的,在临床环境中不切实际的。提出了一种基于形状先验和主成分分析的多维自动边缘检测算法。我们开发了一个高度定制的参数化模型,用于同时实现左心室(LV)、右心室(RV)和心外膜(Epi)的隐式分割曲线(3D)表示。我们将这些表征结合在一个基于区域的图像建模框架中,该框架具有高水平的约束,能够对复杂的心脏解剖结构进行建模,从而自动指导心脏内/心外膜边界的分割。在30个短轴CTA数据集上的测试结果显示,LV、RV和Epi的分割误差(平均±标准差mm)分别为(1.46±0.41)、(2.06±0.65)、(2.88±0.59)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.

Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.

Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.

Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.

Segmentation of epicardial and endocardial boundaries is a critical step in diagnosing cardiovascular function in heart patients. The manual tracing of organ contours in Computed Tomography Angiography (CTA) slices is subjective, time-consuming and impractical in clinical setting. We propose a novel multi-dimensional automatic edge detection algorithm based on shape priors and principal component analysis (PCA). We have developed a highly customized parametric model for implicit representations of segmenting curves (3D) for Left Ventricle (LV), Right Ventricle (RV), and Epicardium (Epi) used simultaneously to achieve myocardial segmentation. We have combined these representations in a region-based image modeling framework with high level constraints enabling the modeling of complex cardiac anatomical structures to automatically guide the segmentation of endo/epicardial boundaries. Test results on 30 short-axis CTA datasets show robust segmentation with error (mean ± std mm) of (1.46 ± 0.41), (2.06 ± 0.65), (2.88 ± 0.59) for LV, RV and Epi respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信