{"title":"用于商业生产的快速溶解口腔薄膜3D打印的下一步。","authors":"Touraj Ehtezazi, Marwan Algellay, Alison Hardy","doi":"10.2174/1872211314666191230115851","DOIUrl":null,"url":null,"abstract":"<p><p>3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient's needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.</p>","PeriodicalId":40024,"journal":{"name":"Recent Patents on Drug Delivery and Formulation","volume":"14 1","pages":"5-20"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1872211314666191230115851","citationCount":"6","resultStr":"{\"title\":\"Next Steps in 3D Printing of Fast Dissolving Oral Films for Commercial Production.\",\"authors\":\"Touraj Ehtezazi, Marwan Algellay, Alison Hardy\",\"doi\":\"10.2174/1872211314666191230115851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient's needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.</p>\",\"PeriodicalId\":40024,\"journal\":{\"name\":\"Recent Patents on Drug Delivery and Formulation\",\"volume\":\"14 1\",\"pages\":\"5-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1872211314666191230115851\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Drug Delivery and Formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872211314666191230115851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Drug Delivery and Formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872211314666191230115851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Next Steps in 3D Printing of Fast Dissolving Oral Films for Commercial Production.
3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient's needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.
期刊介绍:
Recent Patents on Drug Delivery & Formulation publishes review and research articles, drug clinical trial studies and guest edited thematic issues on recent patents on drug delivery and formulation. A selection of important and recent patents on drug delivery and formulation is also included in the journal. The journal is essential reading for all researchers involved in the fields of drug delivery and formulation. The journal also covers recent research (where patents have been registered) in fast emerging therapeutic areas/targets & therapeutic agents related to drug delivery and formulations.