如何准确、私密地识别异常。

Hafiz Asif, Periklis A Papakonstantinou, Jaideep Vaidya
{"title":"如何准确、私密地识别异常。","authors":"Hafiz Asif,&nbsp;Periklis A Papakonstantinou,&nbsp;Jaideep Vaidya","doi":"10.1145/3319535.3363209","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying anomalies in data is central to the advancement of science, national security, and finance. However, privacy concerns restrict our ability to analyze data. Can we lift these restrictions and accurately identify anomalies without hurting the privacy of those who contribute their data? We address this question for the most practically relevant case, where a record is considered anomalous relative to other records. We make four contributions. First, we introduce the notion of sensitive privacy, which conceptualizes what it means to privately identify anomalies. Sensitive privacy generalizes the important concept of differential privacy and is amenable to analysis. Importantly, sensitive privacy admits algorithmic constructions that provide strong and practically meaningful privacy and utility guarantees. Second, we show that differential privacy is inherently incapable of accurately and privately identifying anomalies; in this sense, our generalization is necessary. Third, we provide a general compiler that takes as input a differentially private mechanism (which has bad utility for anomaly identification) and transforms it into a sensitively private one. This compiler, which is mostly of theoretical importance, is shown to output a mechanism whose utility greatly improves over the utility of the input mechanism. As our fourth contribution we propose mechanisms for a popular definition of anomaly ((<i>β</i>, <i>r</i>)-anomaly) that (i) are guaranteed to be sensitively private, (ii) come with provable utility guarantees, and (iii) are empirically shown to have an overwhelmingly accurate performance over a range of datasets and evaluation criteria.</p>","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"2019 ","pages":"719-736"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3319535.3363209","citationCount":"12","resultStr":"{\"title\":\"How to Accurately and Privately Identify Anomalies.\",\"authors\":\"Hafiz Asif,&nbsp;Periklis A Papakonstantinou,&nbsp;Jaideep Vaidya\",\"doi\":\"10.1145/3319535.3363209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying anomalies in data is central to the advancement of science, national security, and finance. However, privacy concerns restrict our ability to analyze data. Can we lift these restrictions and accurately identify anomalies without hurting the privacy of those who contribute their data? We address this question for the most practically relevant case, where a record is considered anomalous relative to other records. We make four contributions. First, we introduce the notion of sensitive privacy, which conceptualizes what it means to privately identify anomalies. Sensitive privacy generalizes the important concept of differential privacy and is amenable to analysis. Importantly, sensitive privacy admits algorithmic constructions that provide strong and practically meaningful privacy and utility guarantees. Second, we show that differential privacy is inherently incapable of accurately and privately identifying anomalies; in this sense, our generalization is necessary. Third, we provide a general compiler that takes as input a differentially private mechanism (which has bad utility for anomaly identification) and transforms it into a sensitively private one. This compiler, which is mostly of theoretical importance, is shown to output a mechanism whose utility greatly improves over the utility of the input mechanism. As our fourth contribution we propose mechanisms for a popular definition of anomaly ((<i>β</i>, <i>r</i>)-anomaly) that (i) are guaranteed to be sensitively private, (ii) come with provable utility guarantees, and (iii) are empirically shown to have an overwhelmingly accurate performance over a range of datasets and evaluation criteria.</p>\",\"PeriodicalId\":72687,\"journal\":{\"name\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"volume\":\"2019 \",\"pages\":\"719-736\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3319535.3363209\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3319535.3363209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3319535.3363209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

识别数据中的异常对于科学、国家安全和金融的发展至关重要。然而,隐私问题限制了我们分析数据的能力。我们能否解除这些限制,在不损害那些提供数据的人的隐私的情况下准确地识别异常情况?我们为最实际相关的情况解决这个问题,其中一个记录被认为是相对于其他记录异常。我们有四个贡献。首先,我们引入了敏感隐私的概念,它将私下识别异常的含义概念化。敏感隐私是差分隐私这一重要概念的概括,是易于分析的。重要的是,敏感隐私允许算法结构提供强大的和实际有意义的隐私和效用保证。其次,我们表明差分隐私本质上无法准确和私密地识别异常;从这个意义上说,我们的概括是必要的。第三,我们提供了一个通用编译器,该编译器将差分私有机制(对异常识别的效用较差)作为输入,并将其转换为敏感私有机制。这个编译器主要具有理论重要性,它输出的机制的效用大大提高了输入机制的效用。作为我们的第四个贡献,我们提出了异常((β, r)-异常)的流行定义机制,(i)保证敏感私有,(ii)具有可证明的效用保证,以及(iii)经验证明在一系列数据集和评估标准上具有绝对准确的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Accurately and Privately Identify Anomalies.

Identifying anomalies in data is central to the advancement of science, national security, and finance. However, privacy concerns restrict our ability to analyze data. Can we lift these restrictions and accurately identify anomalies without hurting the privacy of those who contribute their data? We address this question for the most practically relevant case, where a record is considered anomalous relative to other records. We make four contributions. First, we introduce the notion of sensitive privacy, which conceptualizes what it means to privately identify anomalies. Sensitive privacy generalizes the important concept of differential privacy and is amenable to analysis. Importantly, sensitive privacy admits algorithmic constructions that provide strong and practically meaningful privacy and utility guarantees. Second, we show that differential privacy is inherently incapable of accurately and privately identifying anomalies; in this sense, our generalization is necessary. Third, we provide a general compiler that takes as input a differentially private mechanism (which has bad utility for anomaly identification) and transforms it into a sensitively private one. This compiler, which is mostly of theoretical importance, is shown to output a mechanism whose utility greatly improves over the utility of the input mechanism. As our fourth contribution we propose mechanisms for a popular definition of anomaly ((β, r)-anomaly) that (i) are guaranteed to be sensitively private, (ii) come with provable utility guarantees, and (iii) are empirically shown to have an overwhelmingly accurate performance over a range of datasets and evaluation criteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信