James D Wilson, John Palowitch, Shankar Bhamidi, Andrew B Nobel
{"title":"具有异构社区结构的多层网络中的社区提取。","authors":"James D Wilson, John Palowitch, Shankar Bhamidi, Andrew B Nobel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multilayer networks are a useful way to capture and model multiple, binary or weighted relationships among a fixed group of objects. While community detection has proven to be a useful exploratory technique for the analysis of single-layer networks, the development of community detection methods for multilayer networks is still in its infancy. We propose and investigate a procedure, called Multilayer Extraction, that identifies densely connected vertex-layer sets in multilayer networks. Multilayer Extraction makes use of a significance based score that quantifies the connectivity of an observed vertex-layer set through comparison with a fixed degree random graph model. Multilayer Extraction directly handles networks with heterogeneous layers where community structure may be different from layer to layer. The procedure can capture overlapping communities, as well as background vertex-layer pairs that do not belong to any community. We establish consistency of the vertex-layer set optimizer of our proposed multilayer score under the multilayer stochastic block model. We investigate the performance of Multilayer Extraction on three applications and a test bed of simulations. Our theoretical and numerical evaluations suggest that Multilayer Extraction is an effective exploratory tool for analyzing complex multilayer networks. Publicly available code is available at https://github.com/jdwilson4/MultilayerExtraction.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"18 ","pages":"5458-5506"},"PeriodicalIF":4.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927681/pdf/nihms-1022819.pdf","citationCount":"0","resultStr":"{\"title\":\"Community Extraction in Multilayer Networks with Heterogeneous Community Structure.\",\"authors\":\"James D Wilson, John Palowitch, Shankar Bhamidi, Andrew B Nobel\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multilayer networks are a useful way to capture and model multiple, binary or weighted relationships among a fixed group of objects. While community detection has proven to be a useful exploratory technique for the analysis of single-layer networks, the development of community detection methods for multilayer networks is still in its infancy. We propose and investigate a procedure, called Multilayer Extraction, that identifies densely connected vertex-layer sets in multilayer networks. Multilayer Extraction makes use of a significance based score that quantifies the connectivity of an observed vertex-layer set through comparison with a fixed degree random graph model. Multilayer Extraction directly handles networks with heterogeneous layers where community structure may be different from layer to layer. The procedure can capture overlapping communities, as well as background vertex-layer pairs that do not belong to any community. We establish consistency of the vertex-layer set optimizer of our proposed multilayer score under the multilayer stochastic block model. We investigate the performance of Multilayer Extraction on three applications and a test bed of simulations. Our theoretical and numerical evaluations suggest that Multilayer Extraction is an effective exploratory tool for analyzing complex multilayer networks. Publicly available code is available at https://github.com/jdwilson4/MultilayerExtraction.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":\"18 \",\"pages\":\"5458-5506\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927681/pdf/nihms-1022819.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Community Extraction in Multilayer Networks with Heterogeneous Community Structure.
Multilayer networks are a useful way to capture and model multiple, binary or weighted relationships among a fixed group of objects. While community detection has proven to be a useful exploratory technique for the analysis of single-layer networks, the development of community detection methods for multilayer networks is still in its infancy. We propose and investigate a procedure, called Multilayer Extraction, that identifies densely connected vertex-layer sets in multilayer networks. Multilayer Extraction makes use of a significance based score that quantifies the connectivity of an observed vertex-layer set through comparison with a fixed degree random graph model. Multilayer Extraction directly handles networks with heterogeneous layers where community structure may be different from layer to layer. The procedure can capture overlapping communities, as well as background vertex-layer pairs that do not belong to any community. We establish consistency of the vertex-layer set optimizer of our proposed multilayer score under the multilayer stochastic block model. We investigate the performance of Multilayer Extraction on three applications and a test bed of simulations. Our theoretical and numerical evaluations suggest that Multilayer Extraction is an effective exploratory tool for analyzing complex multilayer networks. Publicly available code is available at https://github.com/jdwilson4/MultilayerExtraction.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.