{"title":"应力颗粒调节副斑:RNP颗粒连续体在工作。","authors":"Haiyan An, Tatyana A Shelkovnikova","doi":"10.15698/cst2019.12.207","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic cells contain several types of RNA-protein membraneless macro-complexes - ribonucleoprotein (RNP) granules that form by liquid-liquid phase separation. These structures represent biochemical microreactors for a variety of cellular processes and also act as highly accurate sensors of changes in the cellular environment. RNP granules share multiple protein components, however, the connection between spatially separated granules remains surprisingly understudied. Paraspeckles are constitutive nuclear RNP granules whose numbers significantly increase in stressed cells. Our recent work using affinity-purified paraspeckles revealed that another type of RNP granule, cytoplasmic stress granule (SG), acts as an important regulator of stress-induced paraspeckle assembly. Our study demonstrates that despite their residency in different cellular compartments, the two RNP granules are closely connected. This study suggests that nuclear and cytoplasmic RNP granules are integral parts of the intracellular \"RNP granule continuum\" and that rapid exchange of protein components within this continuum is important for the temporal control of cellular stress responses. It also suggests that cells can tolerate and efficiently handle a certain level of phase separation, which is reflected in the existence of \"bursts\", or \"waves\", of RNP granule formation. Our study triggers a number of important questions related to the mechanisms controlling the flow of RNP granule components within the continuum and to the possibility of targeting these mechanisms in human disease.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883742/pdf/","citationCount":"6","resultStr":"{\"title\":\"Stress granules regulate paraspeckles: RNP granule continuum at work.\",\"authors\":\"Haiyan An, Tatyana A Shelkovnikova\",\"doi\":\"10.15698/cst2019.12.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic cells contain several types of RNA-protein membraneless macro-complexes - ribonucleoprotein (RNP) granules that form by liquid-liquid phase separation. These structures represent biochemical microreactors for a variety of cellular processes and also act as highly accurate sensors of changes in the cellular environment. RNP granules share multiple protein components, however, the connection between spatially separated granules remains surprisingly understudied. Paraspeckles are constitutive nuclear RNP granules whose numbers significantly increase in stressed cells. Our recent work using affinity-purified paraspeckles revealed that another type of RNP granule, cytoplasmic stress granule (SG), acts as an important regulator of stress-induced paraspeckle assembly. Our study demonstrates that despite their residency in different cellular compartments, the two RNP granules are closely connected. This study suggests that nuclear and cytoplasmic RNP granules are integral parts of the intracellular \\\"RNP granule continuum\\\" and that rapid exchange of protein components within this continuum is important for the temporal control of cellular stress responses. It also suggests that cells can tolerate and efficiently handle a certain level of phase separation, which is reflected in the existence of \\\"bursts\\\", or \\\"waves\\\", of RNP granule formation. Our study triggers a number of important questions related to the mechanisms controlling the flow of RNP granule components within the continuum and to the possibility of targeting these mechanisms in human disease.</p>\",\"PeriodicalId\":36371,\"journal\":{\"name\":\"Cell Stress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883742/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15698/cst2019.12.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2019.12.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Stress granules regulate paraspeckles: RNP granule continuum at work.
Eukaryotic cells contain several types of RNA-protein membraneless macro-complexes - ribonucleoprotein (RNP) granules that form by liquid-liquid phase separation. These structures represent biochemical microreactors for a variety of cellular processes and also act as highly accurate sensors of changes in the cellular environment. RNP granules share multiple protein components, however, the connection between spatially separated granules remains surprisingly understudied. Paraspeckles are constitutive nuclear RNP granules whose numbers significantly increase in stressed cells. Our recent work using affinity-purified paraspeckles revealed that another type of RNP granule, cytoplasmic stress granule (SG), acts as an important regulator of stress-induced paraspeckle assembly. Our study demonstrates that despite their residency in different cellular compartments, the two RNP granules are closely connected. This study suggests that nuclear and cytoplasmic RNP granules are integral parts of the intracellular "RNP granule continuum" and that rapid exchange of protein components within this continuum is important for the temporal control of cellular stress responses. It also suggests that cells can tolerate and efficiently handle a certain level of phase separation, which is reflected in the existence of "bursts", or "waves", of RNP granule formation. Our study triggers a number of important questions related to the mechanisms controlling the flow of RNP granule components within the continuum and to the possibility of targeting these mechanisms in human disease.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.