Suxiang Lu, Qian Xiong, Kang Du, Xiaoni Gan, Xuzhen Wang, Liandong Yang, Ying Wang, Feng Ge, Shunping He
{"title":"比较iTRAQ蛋白质组学揭示了与双翅鱼分叶鳍再生相关的蛋白质。","authors":"Suxiang Lu, Qian Xiong, Kang Du, Xiaoni Gan, Xuzhen Wang, Liandong Yang, Ying Wang, Feng Ge, Shunping He","doi":"10.1186/s12953-019-0153-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Polypterus senegalus</i> can fully regenerate its pectoral lobed fins, including a complex endoskeleton, with remarkable precision. However, despite the enormous potential of this species for use in medical research, its regeneration mechanisms remain largely unknown.</p><p><strong>Methods: </strong>To identify the differentially expressed proteins (DEPs) during the early stages of lobed fin regeneration in <i>P. senegalus</i>, we performed a differential proteomic analysis using isobaric tag for relative and absolute quantitation (iTRAQ) approach based quantitative proteome from the pectoral lobed fins at 3 time points. Furthermore, we validated the changes in protein expression with multiple-reaction monitoring (MRM) analysis.</p><p><strong>Results: </strong>The experiment yielded a total of 3177 proteins and 15,091 unique peptides including 1006 non-redundant (nr) DEPs. Of these, 592 were upregulated while 349 were downregulated after lobed fin amputation when compared to the original tissue. Bioinformatics analyses showed that the DEPs were mainly associated with Ribosome and RNA transport, metabolic, ECM-receptor interaction, Golgi and endoplasmic reticulum, DNA replication, and Regulation of actin cytoskeleton.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first proteomic research to investigate alterations in protein levels and affected pathways in bichirs' lobe-fin/limb regeneration. In addition, our study demonstrated a highly dynamic regulation during lobed fin regeneration in <i>P. senegalus</i>. These results not only provide a comprehensive dataset on differentially expressed proteins during the early stages of lobe-fin/limb regeneration but also advance our understanding of the molecular mechanisms underlying lobe-fin/limb regeneration.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"17 ","pages":"6"},"PeriodicalIF":2.1000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12953-019-0153-0","citationCount":"0","resultStr":"{\"title\":\"Comparative iTRAQ proteomics revealed proteins associated with lobed fin regeneration in Bichirs.\",\"authors\":\"Suxiang Lu, Qian Xiong, Kang Du, Xiaoni Gan, Xuzhen Wang, Liandong Yang, Ying Wang, Feng Ge, Shunping He\",\"doi\":\"10.1186/s12953-019-0153-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong><i>Polypterus senegalus</i> can fully regenerate its pectoral lobed fins, including a complex endoskeleton, with remarkable precision. However, despite the enormous potential of this species for use in medical research, its regeneration mechanisms remain largely unknown.</p><p><strong>Methods: </strong>To identify the differentially expressed proteins (DEPs) during the early stages of lobed fin regeneration in <i>P. senegalus</i>, we performed a differential proteomic analysis using isobaric tag for relative and absolute quantitation (iTRAQ) approach based quantitative proteome from the pectoral lobed fins at 3 time points. Furthermore, we validated the changes in protein expression with multiple-reaction monitoring (MRM) analysis.</p><p><strong>Results: </strong>The experiment yielded a total of 3177 proteins and 15,091 unique peptides including 1006 non-redundant (nr) DEPs. Of these, 592 were upregulated while 349 were downregulated after lobed fin amputation when compared to the original tissue. Bioinformatics analyses showed that the DEPs were mainly associated with Ribosome and RNA transport, metabolic, ECM-receptor interaction, Golgi and endoplasmic reticulum, DNA replication, and Regulation of actin cytoskeleton.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first proteomic research to investigate alterations in protein levels and affected pathways in bichirs' lobe-fin/limb regeneration. In addition, our study demonstrated a highly dynamic regulation during lobed fin regeneration in <i>P. senegalus</i>. These results not only provide a comprehensive dataset on differentially expressed proteins during the early stages of lobe-fin/limb regeneration but also advance our understanding of the molecular mechanisms underlying lobe-fin/limb regeneration.</p>\",\"PeriodicalId\":20857,\"journal\":{\"name\":\"Proteome Science\",\"volume\":\"17 \",\"pages\":\"6\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12953-019-0153-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteome Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12953-019-0153-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-019-0153-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Comparative iTRAQ proteomics revealed proteins associated with lobed fin regeneration in Bichirs.
Background: Polypterus senegalus can fully regenerate its pectoral lobed fins, including a complex endoskeleton, with remarkable precision. However, despite the enormous potential of this species for use in medical research, its regeneration mechanisms remain largely unknown.
Methods: To identify the differentially expressed proteins (DEPs) during the early stages of lobed fin regeneration in P. senegalus, we performed a differential proteomic analysis using isobaric tag for relative and absolute quantitation (iTRAQ) approach based quantitative proteome from the pectoral lobed fins at 3 time points. Furthermore, we validated the changes in protein expression with multiple-reaction monitoring (MRM) analysis.
Results: The experiment yielded a total of 3177 proteins and 15,091 unique peptides including 1006 non-redundant (nr) DEPs. Of these, 592 were upregulated while 349 were downregulated after lobed fin amputation when compared to the original tissue. Bioinformatics analyses showed that the DEPs were mainly associated with Ribosome and RNA transport, metabolic, ECM-receptor interaction, Golgi and endoplasmic reticulum, DNA replication, and Regulation of actin cytoskeleton.
Conclusions: To our knowledge, this is the first proteomic research to investigate alterations in protein levels and affected pathways in bichirs' lobe-fin/limb regeneration. In addition, our study demonstrated a highly dynamic regulation during lobed fin regeneration in P. senegalus. These results not only provide a comprehensive dataset on differentially expressed proteins during the early stages of lobe-fin/limb regeneration but also advance our understanding of the molecular mechanisms underlying lobe-fin/limb regeneration.
期刊介绍:
Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context.
Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics.
In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.