Xinyue Yuan, Vishalini Emmenegger, Marie Engelene J Obien, Andreas Hierlemann, Urs Frey
{"title":"双模微电极阵列,具有20k电极和高信噪比,用于神经网络的细胞外记录。","authors":"Xinyue Yuan, Vishalini Emmenegger, Marie Engelene J Obien, Andreas Hierlemann, Urs Frey","doi":"10.1109/BIOCAS.2018.8584735","DOIUrl":null,"url":null,"abstract":"<p><p>In recent electrophysiological studies, CMOS-based high-density microelectrode arrays (HD-MEA) have been widely used for studies of both <i>in-vitro</i> and <i>in-vivo</i> neuronal signals and network behavior. Yet, an open issue in MEA design concerns the tradeoff between signal-to-noise ratio (SNR) and number of readout channels. Here we present a new HD-MEA design in 0.18 μm CMOS technology, consisting of 19,584 electrodes at a pitch of 18.0 μm. By combing two readout structures, namely active-pixel-sensor (APS) and switch-matrix (SM) on a single chip, the dual-mode HD-MEA is capable of recording simultaneously from the entire array and achieving high signal-to-noise-ratio recordings on a subset of electrodes. The APS readout circuits feature a noise level of 10.9 μV<sub>rms</sub> for the action potential band (300 Hz - 5 kHz), while the noise level for the switch-matrix readout is 3.1 μV<sub>rms</sub>.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2018.8584735","citationCount":"14","resultStr":"{\"title\":\"Dual-mode Microelectrode Array Featuring 20k Electrodes and High SNR for Extracellular Recording of Neural Networks.\",\"authors\":\"Xinyue Yuan, Vishalini Emmenegger, Marie Engelene J Obien, Andreas Hierlemann, Urs Frey\",\"doi\":\"10.1109/BIOCAS.2018.8584735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent electrophysiological studies, CMOS-based high-density microelectrode arrays (HD-MEA) have been widely used for studies of both <i>in-vitro</i> and <i>in-vivo</i> neuronal signals and network behavior. Yet, an open issue in MEA design concerns the tradeoff between signal-to-noise ratio (SNR) and number of readout channels. Here we present a new HD-MEA design in 0.18 μm CMOS technology, consisting of 19,584 electrodes at a pitch of 18.0 μm. By combing two readout structures, namely active-pixel-sensor (APS) and switch-matrix (SM) on a single chip, the dual-mode HD-MEA is capable of recording simultaneously from the entire array and achieving high signal-to-noise-ratio recordings on a subset of electrodes. The APS readout circuits feature a noise level of 10.9 μV<sub>rms</sub> for the action potential band (300 Hz - 5 kHz), while the noise level for the switch-matrix readout is 3.1 μV<sub>rms</sub>.</p>\",\"PeriodicalId\":73279,\"journal\":{\"name\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"2018 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/BIOCAS.2018.8584735\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2018.8584735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2018.8584735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-mode Microelectrode Array Featuring 20k Electrodes and High SNR for Extracellular Recording of Neural Networks.
In recent electrophysiological studies, CMOS-based high-density microelectrode arrays (HD-MEA) have been widely used for studies of both in-vitro and in-vivo neuronal signals and network behavior. Yet, an open issue in MEA design concerns the tradeoff between signal-to-noise ratio (SNR) and number of readout channels. Here we present a new HD-MEA design in 0.18 μm CMOS technology, consisting of 19,584 electrodes at a pitch of 18.0 μm. By combing two readout structures, namely active-pixel-sensor (APS) and switch-matrix (SM) on a single chip, the dual-mode HD-MEA is capable of recording simultaneously from the entire array and achieving high signal-to-noise-ratio recordings on a subset of electrodes. The APS readout circuits feature a noise level of 10.9 μVrms for the action potential band (300 Hz - 5 kHz), while the noise level for the switch-matrix readout is 3.1 μVrms.