一种新的个体化药物重新定位方法预测1型糖尿病个体化候选药物。

IF 0.9 4区 数学 Q3 Mathematics
Hong Zheng
{"title":"一种新的个体化药物重新定位方法预测1型糖尿病个体化候选药物。","authors":"Hong Zheng","doi":"10.1515/sagmb-2018-0052","DOIUrl":null,"url":null,"abstract":"<p><p>The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"18 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0052","citationCount":"1","resultStr":"{\"title\":\"A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus.\",\"authors\":\"Hong Zheng\",\"doi\":\"10.1515/sagmb-2018-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0052\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

高成本消耗和高失败率的存在提示在药物发现中应促进药物重新定位。现有的药物重新定位技术主要集中在发现一种疾病的候选药物,不适合预测单个样本的候选药物。1型糖尿病(T1DM)是一种由自身免疫破坏胰腺β细胞引起的葡萄糖稳态紊乱。在这里,我们提出了一种新的单样本药物重新定位方法,用于预测个体化T1DM候选药物。我们的方法是基于观察药物-疾病关联,通过使用Kolmogorov-Smirnov加权富集评分算法测量疾病和各种药物引起的个体化通路异常的相似性。使用这种方法,我们预测了几种潜在的T1DM候选药物。其中一些已被报道用于治疗糖尿病,一些目前具有治疗其他疾病适应症的药物可能被重新用于治疗T1DM。本研究通过检测疾病和药物作用之间的功能联系,在个性化或定制的基础上进行药物发现。我们的框架为复杂疾病的系统个性化药物发现提供了一种合理的方法,并有助于未来定制治疗决策的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus.

The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信