Marco T Y Schneider, Ju Zhang, Joseph J Crisco, Arnold-Peter C Weiss, Amy L Ladd, Poul M F Nielsen, Thor Besier
{"title":"基于参数统计形状建模和随机森林回归投票的拇指梯形-掌骨关节自动分割。","authors":"Marco T Y Schneider, Ju Zhang, Joseph J Crisco, Arnold-Peter C Weiss, Amy L Ladd, Poul M F Nielsen, Thor Besier","doi":"10.1080/21681163.2018.1501765","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an automatic pipeline for creating shape modelling suitable parametric meshes of the trapeziometacarpal (TMC) joint from clinical CT images for the purpose of batch processing and analysis. The method uses 3D random forest regression voting (RFRV) with statistical shape model (SSM) segmentation. The method was demonstrated in a validation experiment involving 65 CT images, 15 of which were randomly selected to be excluded from the training set for testing. With mean root mean squared (RMS) errors of 1.066 mm and 0.632 mm for the first metacarpal and trapezial bones respectively, and a segmentation time of ~2 minutes per CT image, the preliminary results showed promise for providing accurate 3D meshes of TMC joint bones for batch processing.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21681163.2018.1501765","citationCount":"3","resultStr":"{\"title\":\"Automatic segmentation of the thumb trapeziometacarpal joint using parametric statistical shape modelling and random forest regression voting.\",\"authors\":\"Marco T Y Schneider, Ju Zhang, Joseph J Crisco, Arnold-Peter C Weiss, Amy L Ladd, Poul M F Nielsen, Thor Besier\",\"doi\":\"10.1080/21681163.2018.1501765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose an automatic pipeline for creating shape modelling suitable parametric meshes of the trapeziometacarpal (TMC) joint from clinical CT images for the purpose of batch processing and analysis. The method uses 3D random forest regression voting (RFRV) with statistical shape model (SSM) segmentation. The method was demonstrated in a validation experiment involving 65 CT images, 15 of which were randomly selected to be excluded from the training set for testing. With mean root mean squared (RMS) errors of 1.066 mm and 0.632 mm for the first metacarpal and trapezial bones respectively, and a segmentation time of ~2 minutes per CT image, the preliminary results showed promise for providing accurate 3D meshes of TMC joint bones for batch processing.</p>\",\"PeriodicalId\":51800,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21681163.2018.1501765\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681163.2018.1501765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2018.1501765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Automatic segmentation of the thumb trapeziometacarpal joint using parametric statistical shape modelling and random forest regression voting.
We propose an automatic pipeline for creating shape modelling suitable parametric meshes of the trapeziometacarpal (TMC) joint from clinical CT images for the purpose of batch processing and analysis. The method uses 3D random forest regression voting (RFRV) with statistical shape model (SSM) segmentation. The method was demonstrated in a validation experiment involving 65 CT images, 15 of which were randomly selected to be excluded from the training set for testing. With mean root mean squared (RMS) errors of 1.066 mm and 0.632 mm for the first metacarpal and trapezial bones respectively, and a segmentation time of ~2 minutes per CT image, the preliminary results showed promise for providing accurate 3D meshes of TMC joint bones for batch processing.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.