迷宫分形中弧的长度。

Pub Date : 2018-01-01 Epub Date: 2017-05-15 DOI:10.1007/s00605-017-1056-8
Ligia L Cristea, Gunther Leobacher
{"title":"迷宫分形中弧的长度。","authors":"Ligia L Cristea,&nbsp;Gunther Leobacher","doi":"10.1007/s00605-017-1056-8","DOIUrl":null,"url":null,"abstract":"<p><p>Labyrinth fractals are self-similar dendrites in the unit square that are defined with the help of a labyrinth set or a labyrinth pattern. In the case when the fractal is generated by a horizontally and vertically blocked pattern, the arc between any two points in the fractal has infinite length (Cristea and Steinsky in Geom Dedicata 141(1):1-17, 2009; Proc Edinb Math Soc 54(2):329-344, 2011). In the case of mixed labyrinth fractals a sequence of labyrinth patterns is used in order to construct the dendrite. In the present article we focus on the length of the arcs between points of mixed labyrinth fractals. We show that, depending on the choice of the patterns in the sequence, both situations can occur: the arc between any two points of the fractal has finite length, or the arc between any two points of the fractal has infinite length. This is in stark contrast to the self-similar case.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-017-1056-8","citationCount":"4","resultStr":"{\"title\":\"On the length of arcs in labyrinth fractals.\",\"authors\":\"Ligia L Cristea,&nbsp;Gunther Leobacher\",\"doi\":\"10.1007/s00605-017-1056-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Labyrinth fractals are self-similar dendrites in the unit square that are defined with the help of a labyrinth set or a labyrinth pattern. In the case when the fractal is generated by a horizontally and vertically blocked pattern, the arc between any two points in the fractal has infinite length (Cristea and Steinsky in Geom Dedicata 141(1):1-17, 2009; Proc Edinb Math Soc 54(2):329-344, 2011). In the case of mixed labyrinth fractals a sequence of labyrinth patterns is used in order to construct the dendrite. In the present article we focus on the length of the arcs between points of mixed labyrinth fractals. We show that, depending on the choice of the patterns in the sequence, both situations can occur: the arc between any two points of the fractal has finite length, or the arc between any two points of the fractal has infinite length. This is in stark contrast to the self-similar case.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-017-1056-8\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-017-1056-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-017-1056-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

迷宫分形是由迷宫集合或迷宫图案定义的单位正方形中的自相似树突。当分形由水平方向和垂直方向的阻塞模式生成时,分形中任意两点之间的弧具有无限长(Cristea and Steinsky In Geom Dedicata 141(1):1-17, 2009;学报:自然科学版,2011(2):329-344。在混合迷宫分形的情况下,使用迷宫图案序列来构造树突。本文主要讨论混合迷宫分形的点间弧的长度。我们表明,根据序列中图案的选择,这两种情况都可能发生:分形的任意两点之间的弧具有有限长度,或者分形的任意两点之间的弧具有无限长度。这与自相似的情况形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the length of arcs in labyrinth fractals.

On the length of arcs in labyrinth fractals.

On the length of arcs in labyrinth fractals.

分享
查看原文
On the length of arcs in labyrinth fractals.

Labyrinth fractals are self-similar dendrites in the unit square that are defined with the help of a labyrinth set or a labyrinth pattern. In the case when the fractal is generated by a horizontally and vertically blocked pattern, the arc between any two points in the fractal has infinite length (Cristea and Steinsky in Geom Dedicata 141(1):1-17, 2009; Proc Edinb Math Soc 54(2):329-344, 2011). In the case of mixed labyrinth fractals a sequence of labyrinth patterns is used in order to construct the dendrite. In the present article we focus on the length of the arcs between points of mixed labyrinth fractals. We show that, depending on the choice of the patterns in the sequence, both situations can occur: the arc between any two points of the fractal has finite length, or the arc between any two points of the fractal has infinite length. This is in stark contrast to the self-similar case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信